Skip to content

lfiaschi/simple-STORM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

/************************************************************************/
/*                                                                      */
/*                  ANALYSIS OF STORM DATA                              */
/*                                                                      */
/*    Copyright 2010-2011 by Joachim Schleicher and Ullrich Koethe      */
/*                                                                      */
/*    Please direct questions, bug reports, and contributions to        */
/*    joachim.schleicher@iwr.uni-heidelberg.de                          */
/************************************************************************/

dSTORM microscopy can improve the resolution of conventional fluorescent
microscopy by one order of magnitude. The data analysis software has to
localize many thousand single molecule point-spread-functions to
reconstruct an image of the underlying structure.

Content of this archive:
  storm/  sources for single-molecule-localization
          and command-line utility to analyze .sif and .hdf5 input data
  gui/    Qt-based graphical-user-interface (GUI) for selection of
          input files and appropriate parameter(s)
  python/ helper scripts to analyze and display the coordinate
          lists generated by the utilities above
  colorcomposer/
          multi-channel measurements have to be aligned due to
		  chromatic aberrations. Tetraspeck-Beads are detected
		  automatically so that the images can be registrated easily.

See INSTALL for instructions on how to build and install
storm or storm-gui

More algorithmic details are available in the diploma thesis at
http://hci.iwr.uni-heidelberg.de/Staff/jschleic/

About

Data processing software for dSTORM super-resolution microscopy

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 48.1%
  • C++ 45.8%
  • C 5.4%
  • R 0.7%