-
This repository provides the pytorch, onnx, ncnn code example
-
official repo: https://github.com/breizhn/DTLN
- pytorch >= 1.11.0
- librosa
python DTLN_model.py --model_path ./pretrained/model.pth \
--wav_in ./samples/audioset_realrec_airconditioner_2TE3LoA2OUQ.wav \
--wav_out ./out.wav
(./pretrained/model.pth is converted using cvt_from_keras.py)
realtime (truck by truck, avg 2ms in pytorch with cpu):
python realtime_infer.py --model_path ./pretrained/model.pth \
--wav_in ./samples/audioset_realrec_airconditioner_2TE3LoA2OUQ.wav \
--wav_out ./out.wav
src wav:./samples/audioset_realrec_airconditioner_2TE3LoA2OUQ.wav
after enhanced: ./samples/enahnced.wav
realtime (truck by truck, < 1ms in onnxruntime with cpu):
python realtime_onnx.py --wav_in ./samples/audioset_realrec_airconditioner_2TE3LoA2OUQ.wav \
--wav_out ./out.wav
see deploy/
If you are using the DTLN model, please cite:
@inproceedings{Westhausen2020,
author={Nils L. Westhausen and Bernd T. Meyer},
title={{Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression}},
year=2020,
booktitle={Proc. Interspeech 2020},
pages={2477--2481},
doi={10.21437/Interspeech.2020-2631},
url={http://dx.doi.org/10.21437/Interspeech.2020-2631}
}