Skip to content

lifuguan/UPLVP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Saliency Prompt

This code contains our extended version based on CVPR.

Timeline

🚩 Updates

  • Releasing Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation.
  • Our Boosting low-data instance segmentation by unsupervised pre-training with saliency prompt has been accepted by CVPR 2023.
@article{zhang2024unsupervised,
  title={Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation},
  author={Zhang, Dingwen and Li, Hao and He, Diqi and Liu, Nian and Cheng, Lechao and Wang, Jingdong and Han, Junwei},
  journal={arXiv preprint arXiv:2405.13388},
  year={2024}
}
@inproceedings{li2023boosting,
  title={Boosting low-data instance segmentation by unsupervised pre-training with saliency prompt},
  author={Li, Hao and Zhang, Dingwen and Liu, Nian and Cheng, Lechao and Dai, Yalun and Zhang, Chao and Wang, Xinggang and Han, Junwei},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={15485--15494},
  year={2023}
}

Requirements

  • Python 3.8
  • CUDA 11.3
  • PyTorch 1.10.0
  • mmdet 2.19.0
  • mmcv-full 1.4.8
  • mmselfsup 0.10.0

File Structure

UPLVP/
├── configs/
├── custommd/
├── tools_det/
README.md

Usage

Mask Proposal

Requirements:

  • clip 1.0
  • tensorflow-gpu 2.6.0
  • pycocotools 2.0.0

To generate pseudo masks run:

python tools_det/maskproposal.py

Pre-train

To pre-train K-Net/Mask2former/QueryInst with 8 gpus run:

bash tools_det/dist_train.sh configs/selfsup/upknet/upknet_feature_coco_pretrain_labeled_prompt_ann.py 8

or

bash tools_det/dist_train.sh configs/selfsup/upmask2former/upmask2former_r50_lsj_8x2_50e_coco_prompt_ann.py 8

or

bash tools_det/dist_train.sh configs/selfsup/upqueryinst/upqueryinst_r50_fpn_1x_coco_pretrain_moco_labeled_prompt.py 8

Fine-tune

To fine-tune K-Net with 8 gpus on COCO-10%/Cityscapes/CTW1500 run:

bash tools_det/dist_train.sh configs/det/knet/upknet_inherit_coco_10image_openseg_ann.py 8

or

bash tools_det/dist_train.sh configs/det/knet/upknet_s3_r50_fpn_1x_cityscapes.py 8

or

bash tools_det/dist_train.sh configs/det/knet/upknet_s3_r50_fpn_1x_ctw1500.py 8

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 62293543, Grant U21B2048 and Grant 62106235.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published