Skip to content

MobileNet SSD on clCaffe

listenlink edited this page Aug 16, 2017 · 1 revision

Introduction

clCaffe native support MobileNet-SSD and have good performance on Intel Graphics. This Wiki provide detailed BKM to setup and verify MobilNet-SSD model.

DepthWise Convolution

clCaffe implemented depthwise convolution in the SpatialConvolution layer. To enable tuned depthwise convolution for inference please make sure build with USE_INTEL_SPATIAL=ON and let the definition of group have the same size with the input channels and output channels. An example as below,

layer {
  name: "conv2_1/dw"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2_1/dw"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  convolution_param {
    num_output: 32
    bias_term: false
    pad: 1
    kernel_size: 3
    group: 32
    stride: 1
    weight_filler {
      type: "msra"
    }
  }
}

Video detection examples.

There is a brief video detection demo to show the capacity of MobileNet-SSD. please follow below steps to setup

./build/tools/caffe test -model examples/mobilenet_ssd/MobileNetSSD_video_example.prototxt -weights $WEIGHTSPATH/MobileNetSSD_deploy.caffemodel -gpu 0 -phase TEST -iterations 10000
  • You can use your own video by modify the video_file parameter on the two VideoData layer

Verify the accuracy of detection network.

caffe/caffe-fp16 tool of clCaffe support the measurement of mAP of detection network. To verify the accuracy of MobileNet-SSD on VOC database, please follow below steps. The float and half version of clCaffe can achieve 0.727 mAP for VOC2007 test data.

  • Downlad VOC2007 and VOC2012 dataset
# Download the data.
cd $HOME/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data.
tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar
  • Create the LMDB file.
cd $CAFFE_ROOT
# Create the trainval.txt, test.txt, and test_name_size.txt in data/VOC0712/
./data/VOC0712/create_list.sh
# You can modify the parameters in create_data.sh if needed.
# It will create lmdb files for trainval and test with encoded original image:
#   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb
#   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb
# and make soft links at examples/VOC0712/
./data/VOC0712/create_data.sh
  • Verify the mAP on $CAFFE_ROOT directory with below command. Consider the iterations here is 619, that's because the batch we use is 8 and the total images of VOC test database is 8*619=4952. The weights used here can be download from google driver link provided on the previous section.
./build/tools/caffe test -detection -model examples/mobilenet_ssd/MobileNetSSD_test.prototxt -weights $WEIGHTPATH/MobileNetSSD_deploy.caffemodel -gpu 0 -phase TEST -iterations 619
  • Wait in patience to see the detecion_eval output on the terminal. You can also test your own data by prepared your own lmdb database and labelmap portotxt.

Training your own data with MobileNet-SSD.

clCaffe provide the ability to train your own data with backend CPU or GPU(nv/intel). You can follow the scripts and readme provided by https://github.com/chuanqi305/MobileNet-SSD to trained on your own data or reproduce the mAP of pre-trained weights.