Skip to content

The code for our ACL2022 findings paper: CRACSpell: A Contextual Typo Robust Approach with Copy Mechanism to Improve Chinese Spelling Correction

License

Notifications You must be signed in to change notification settings

liushulinle/CRASpell

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CRASpell

Source code for the paper "CRASpell: A Contextual Typo Robust Approach to Improve Chinese Spelling Correction" in ACL2022 findings https://aclanthology.org/2022.findings-acl.237.pdf .

1. Requirements

-python 3.7

-tensorflow 1.14

2. Instructions

Step1: Download the pretrained cBERT from https://drive.google.com/file/d/1cqSTpn7r9pnDcvMoM3BbX1X67JsPdZ8_/view?usp=sharing (our previous work), 
and save it in ./datas/init_bert/cbert

Step2: Run the training script: sh start_train.sh
      The best model will be saved when it is finished.

Step3: Run the evaluation script to obtain the results on whole set and multi-typo set, respectively:
      sh start_eval.sh sighan15_test.sh
      sh start_eval.sh sighan15_multierror.txt
      sh start_eval.sh sighan14_test.sh
      sh start_eval.sh sighan14_multierror.txt

About

The code for our ACL2022 findings paper: CRACSpell: A Contextual Typo Robust Approach with Copy Mechanism to Improve Chinese Spelling Correction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published