Skip to content

liuuzexiang/mixFormer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repo is the official implementations of "Neural Architecture Search on Efficient Transformers and Beyond".

Installation

Install pytorch

NVIDIA Turing architecture or lower GPUs (TITAN V, 2080, etc.):

conda create -n ranknas python=3.7

conda activate ranknas

conda install pytorch==1.5.0 cudatoolkit=10.1 -c pytorch

NVIDIA Ampere architecture GPUs (3090, A100, etc.):

conda create -n ranknas python=3.8

conda activate ranknas

conda install pytorch==1.7.1 cudatoolkit=11.0 -c pytorch

Install other dependent libraries

pip install -e .

cd torchprofile && pip install -e . && cd ..

Data pre-process

bash configs/iwslt14.de-en/preprocess.sh

bash configs/wmt14.en-de/preprocess.sh

bash configs/wikitext-103/preprocess.sh

1. Train the supernet

IWSLT14.De-En:

python train_dynamic.py --configs=configs/iwslt14.de-en/supertransformer/large.yml

WMT14.En-De:

python train_dynamic.py --configs=configs/wmt14.en-de/supertransformer/large.yml

WikiText-103:

python -u train_dynamic.py --configs=configs/wikitext-103/supertransformer/config.yml

Classification: cifar10:

sh train_supernet_cifar10.sh

After training the super-transformers, check checkpoints.

2.1 Collect architectures and their performance

2.1.1 Collect the loss data with the supernet

IWSLT14.De-En:

CUDA_VISIBLE_DEVICES=0 python -u loss_dataset.py --configs=configs/iwslt14.de-en/loss_dataset/config_large.yml

WMT14.En-De:

CUDA_VISIBLE_DEVICES=0 python -u loss_dataset.py --configs=configs/wmt14.en-de/loss_dataset/config_large.yml

WikiText-103:

CUDA_VISIBLE_DEVICES=0 python -u loss_dataset.py --configs=configs/wikitext-103/loss_dataset/config.yml

Classification: cifar10:

sh acc_dataset.sh

After collecting the data, check loss_dataset.

2.1.2 Collect the latency data

IWSLT14.De-En:

CUDA_VISIBLE_DEVICES=0 python -u latency_dataset.py --configs=configs/iwslt14.de-en/latency_dataset/large_gpu_1080ti.yml

WMT14.En-De:

CUDA_VISIBLE_DEVICES=0 python -u latency_dataset.py --configs=configs/wmt14.en-de/latency_dataset/gpu_1080ti.yml

WikiText-103:

CUDA_VISIBLE_DEVICES=0 python -u latency_dataset.py --configs=configs/wikitext-103/latency_dataset/gpu.yml

Classification: cifar10:

sh collect_latency.sh

After collecting the data, check latency_dataset.

2.2 Train the performance ranker

2.2.1 Train the loss ranker

IWSLT14.De-En:

python -u ranker.py -data loss_dataset/iwslt14_large_loss.data -save checkpoints/iwslt14.de-en/loss_ranker

WMT14.En-De:

python -u ranker.py -data loss_dataset/wmt14_large_loss.data -save checkpoints/wmt14.en-de/loss_ranker

WikiText-103:

python -u ranker.py -data loss_dataset/wiki103_loss.data -save checkpoints/wikitext-103/loss_ranker

Classification: cifar10:

sh train_acc_ranker.sh

After training the loss ranker, check checkpoints.

2.2.2 Train the latency ranker

IWSLT14.De-En:

python -u ranker.py -data latency_dataset/iwslt14_large_latency.data -save checkpoints/iwslt14.de-en/latency_ranker

WMT14.En-De:

python -u ranker.py -data latency_dataset/wmt14_large_latency.data -save checkpoints/wmt14.en-de/latency_ranker

WikiText-103:

python -u ranker.py -data latency_dataset/wiki103_gpu_latency.data -save checkpoints/wikitext-103/latency_ranker

Classification: cifar10:

python -u ranker.py -data latency_dataset/cifar_mixatt_gpu.data -save checkpoints/cifar10/latency_ranker

After training the latency ranker, check checkpoints.

Note that training the ranker will print the selected feature indices, which are required for the following searching stage.

3. Search with the performance ranker

WikiText-103:

python evo_search.py --configs=configs/wikitext-103/evo_search/config.yml \
 --latency-feature-list SELECTED_LATENCY_FEATURES \
 --loss-feature-list SELECTED_LOSS_FEATURES \
 --loss-ranker-path checkpoints/wikitext-103/loss_ranker \
 --latency-ranker-path checkpoints/wikitext-103/latency_ranker \
 --latency-constraint 500 \
 --candidate-size 100000 \
 --write-config-path configs

python random_search.py \
 --topk 1 \
 --latency-feature-list SELECTED_LATENCY_FEATURES \
 --loss-feature-list SELECTED_LOSS_FEATURES \
 --loss-ranker-path checkpoints/wikitext-103/loss_ranker \
 --latency-ranker-path checkpoints/wikitext-103/latency_ranker \
 --latency-constraint 500 \
 --candidate-size 100000 \
 --write-config-path configs

Classification: cifar10:

sh search_cifar_mix.sh

Replace SELECTED_LATENCY_FEATURES and SELECTED_LOSS_FEATURES with your results of Step 2.2.1 and Step 2.2.2. An example: 0 1 2 3 4 5.

After searching, check configs.

Note that it will print the search results (stored in a yaml file).

4.1 Train a discovered sub-transformer from scratch

python train.py \
 --sub-configs=configs/wikitext-103/subtransformer/config.yml \
 --configs=configs/PATH_TO_YOUR_SEARCH_RESULT.yml 

Classification: cifar10:

sh train_subnet_cifar10.sh

Replace PATH_TO_YOUR_SEARCH_RESULT to the result of Step 3

4.2 Evaluate the trained sub-transformer

Machine Translation:

PATH_TO_YOUR_SEARCH_RESULT=best.yml
python tools/average_checkpoints.py -path checkpoints/iwslt/test/PATH_TO_YOUR_SEARCH_RESULT -n 10

bash configs/iwslt14.de-en/test_large.sh checkpoints/iwslt/test/PATH_TO_YOUR_SEARCH_RESULT/averaged.pt configs/iwslt/test/PATH_TO_YOUR_SEARCH_RESULT

Replace PATH_TO_YOUR_SEARCH_RESULT to the result of Step 3

Language Modeling:

PATH_TO_MODEL=checkpoints/wikitext-103/subtransformer/checkpoint_best.pt
GPU_ID=0
bash configs/wikitext-103/test.sh PATH_TO_MODEL GPU_ID

Citation

If you use this code, please cite:

@article{liu2022neural,
  title={Neural architecture search on efficient transformers and beyond},
  author={Liu, Zexiang and Li, Dong and Lu, Kaiyue and Qin, Zhen and Sun, Weixuan and Xu, Jiacheng and Zhong, Yiran},
  journal={arXiv preprint arXiv:2207.13955},
  year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages