C# programs are organized using namespaces. Namespaces are used both as an "internal" organization system for a program, and as an "external" organization system—a way of presenting program elements that are exposed to other programs.
Using directives (Using directives) are provided to facilitate the use of namespaces.
A compilation_unit defines the overall structure of a source file. A compilation unit consists of zero or more using_directives followed by zero or more global_attributes followed by zero or more namespace_member_declarations.
compilation_unit
: extern_alias_directive* using_directive* global_attributes? namespace_member_declaration*
;
A C# program consists of one or more compilation units, each contained in a separate source file. When a C# program is compiled, all of the compilation units are processed together. Thus, compilation units can depend on each other, possibly in a circular fashion.
The using_directives of a compilation unit affect the global_attributes and namespace_member_declarations of that compilation unit, but have no effect on other compilation units.
The global_attributes (Attributes) of a compilation unit permit the specification of attributes for the target assembly and module. Assemblies and modules act as physical containers for types. An assembly may consist of several physically separate modules.
The namespace_member_declarations of each compilation unit of a program contribute members to a single declaration space called the global namespace. For example:
File A.cs
:
class A {}
File B.cs
:
class B {}
The two compilation units contribute to the single global namespace, in this case declaring two classes with the fully qualified names A
and B
. Because the two compilation units contribute to the same declaration space, it would have been an error if each contained a declaration of a member with the same name.
A namespace_declaration consists of the keyword namespace
, followed by a namespace name and body, optionally followed by a semicolon.
namespace_declaration
: 'namespace' qualified_identifier namespace_body ';'?
;
qualified_identifier
: identifier ('.' identifier)*
;
namespace_body
: '{' extern_alias_directive* using_directive* namespace_member_declaration* '}'
;
A namespace_declaration may occur as a top-level declaration in a compilation_unit or as a member declaration within another namespace_declaration. When a namespace_declaration occurs as a top-level declaration in a compilation_unit, the namespace becomes a member of the global namespace. When a namespace_declaration occurs within another namespace_declaration, the inner namespace becomes a member of the outer namespace. In either case, the name of a namespace must be unique within the containing namespace.
Namespaces are implicitly public
and the declaration of a namespace cannot include any access modifiers.
Within a namespace_body, the optional using_directives import the names of other namespaces, types and members, allowing them to be referenced directly instead of through qualified names. The optional namespace_member_declarations contribute members to the declaration space of the namespace. Note that all using_directives must appear before any member declarations.
The qualified_identifier of a namespace_declaration may be a single identifier or a sequence of identifiers separated by ".
" tokens. The latter form permits a program to define a nested namespace without lexically nesting several namespace declarations. For example,
namespace N1.N2
{
class A {}
class B {}
}
is semantically equivalent to
namespace N1
{
namespace N2
{
class A {}
class B {}
}
}
Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to the same declaration space (Declarations). In the example
namespace N1.N2
{
class A {}
}
namespace N1.N2
{
class B {}
}
the two namespace declarations above contribute to the same declaration space, in this case declaring two classes with the fully qualified names N1.N2.A
and N1.N2.B
. Because the two declarations contribute to the same declaration space, it would have been an error if each contained a declaration of a member with the same name.
An extern_alias_directive introduces an identifier that serves as an alias for a namespace. The specification of the aliased namespace is external to the source code of the program and applies also to nested namespaces of the aliased namespace.
extern_alias_directive
: 'extern' 'alias' identifier ';'
;
The scope of an extern_alias_directive extends over the using_directives, global_attributes and namespace_member_declarations of its immediately containing compilation unit or namespace body.
Within a compilation unit or namespace body that contains an extern_alias_directive, the identifier introduced by the extern_alias_directive can be used to reference the aliased namespace. It is a compile-time error for the identifier to be the word global
.
An extern_alias_directive makes an alias available within a particular compilation unit or namespace body, but it does not contribute any new members to the underlying declaration space. In other words, an extern_alias_directive is not transitive, but, rather, affects only the compilation unit or namespace body in which it occurs.
The following program declares and uses two extern aliases, X
and Y
, each of which represent the root of a distinct namespace hierarchy:
extern alias X;
extern alias Y;
class Test
{
X::N.A a;
X::N.B b1;
Y::N.B b2;
Y::N.C c;
}
The program declares the existence of the extern aliases X
and Y
, but the actual definitions of the aliases are external to the program. The identically named N.B
classes can now be referenced as X.N.B
and Y.N.B
, or, using the namespace alias qualifier, X::N.B
and Y::N.B
. An error occurs if a program declares an extern alias for which no external definition is provided.
Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives impact the name resolution process of namespace_or_type_names (Namespace and type names) and simple_names (Simple names), but unlike declarations, using directives do not contribute new members to the underlying declaration spaces of the compilation units or namespaces within which they are used.
using_directive
: using_alias_directive
| using_namespace_directive
| using_static_directive
;
A using_alias_directive (Using alias directives) introduces an alias for a namespace or type.
A using_namespace_directive (Using namespace directives) imports the type members of a namespace.
A using_static_directive (Using static directives) imports the nested types and static members of a type.
The scope of a using_directive extends over the namespace_member_declarations of its immediately containing compilation unit or namespace body. The scope of a using_directive specifically does not include its peer using_directives. Thus, peer using_directives do not affect each other, and the order in which they are written is insignificant.
A using_alias_directive introduces an identifier that serves as an alias for a namespace or type within the immediately enclosing compilation unit or namespace body.
using_alias_directive
: 'using' identifier '=' namespace_or_type_name ';'
;
Within member declarations in a compilation unit or namespace body that contains a using_alias_directive, the identifier introduced by the using_alias_directive can be used to reference the given namespace or type. For example:
namespace N1.N2
{
class A {}
}
namespace N3
{
using A = N1.N2.A;
class B: A {}
}
Above, within member declarations in the N3
namespace, A
is an alias for N1.N2.A
, and thus class N3.B
derives from class N1.N2.A
. The same effect can be obtained by creating an alias R
for N1.N2
and then referencing R.A
:
namespace N3
{
using R = N1.N2;
class B: R.A {}
}
The identifier of a using_alias_directive must be unique within the declaration space of the compilation unit or namespace that immediately contains the using_alias_directive. For example:
namespace N3
{
class A {}
}
namespace N3
{
using A = N1.N2.A; // Error, A already exists
}
Above, N3
already contains a member A
, so it is a compile-time error for a using_alias_directive to use that identifier. Likewise, it is a compile-time error for two or more using_alias_directives in the same compilation unit or namespace body to declare aliases by the same name.
A using_alias_directive makes an alias available within a particular compilation unit or namespace body, but it does not contribute any new members to the underlying declaration space. In other words, a using_alias_directive is not transitive but rather affects only the compilation unit or namespace body in which it occurs. In the example
namespace N3
{
using R = N1.N2;
}
namespace N3
{
class B: R.A {} // Error, R unknown
}
the scope of the using_alias_directive that introduces R
only extends to member declarations in the namespace body in which it is contained, so R
is unknown in the second namespace declaration. However, placing the using_alias_directive in the containing compilation unit causes the alias to become available within both namespace declarations:
using R = N1.N2;
namespace N3
{
class B: R.A {}
}
namespace N3
{
class C: R.A {}
}
Just like regular members, names introduced by using_alias_directives are hidden by similarly named members in nested scopes. In the example
using R = N1.N2;
namespace N3
{
class R {}
class B: R.A {} // Error, R has no member A
}
the reference to R.A
in the declaration of B
causes a compile-time error because R
refers to N3.R
, not N1.N2
.
The order in which using_alias_directives are written has no significance, and resolution of the namespace_or_type_name referenced by a using_alias_directive is not affected by the using_alias_directive itself or by other using_directives in the immediately containing compilation unit or namespace body. In other words, the namespace_or_type_name of a using_alias_directive is resolved as if the immediately containing compilation unit or namespace body had no using_directives. A using_alias_directive may however be affected by extern_alias_directives in the immediately containing compilation unit or namespace body. In the example
namespace N1.N2 {}
namespace N3
{
extern alias E;
using R1 = E.N; // OK
using R2 = N1; // OK
using R3 = N1.N2; // OK
using R4 = R2.N2; // Error, R2 unknown
}
the last using_alias_directive results in a compile-time error because it is not affected by the first using_alias_directive. The first using_alias_directive does not result in an error since the scope of the extern alias E
includes the using_alias_directive.
A using_alias_directive can create an alias for any namespace or type, including the namespace within which it appears and any namespace or type nested within that namespace.
Accessing a namespace or type through an alias yields exactly the same result as accessing that namespace or type through its declared name. For example, given
namespace N1.N2
{
class A {}
}
namespace N3
{
using R1 = N1;
using R2 = N1.N2;
class B
{
N1.N2.A a; // refers to N1.N2.A
R1.N2.A b; // refers to N1.N2.A
R2.A c; // refers to N1.N2.A
}
}
the names N1.N2.A
, R1.N2.A
, and R2.A
are equivalent and all refer to the class whose fully qualified name is N1.N2.A
.
Using aliases can name a closed constructed type, but cannot name an unbound generic type declaration without supplying type arguments. For example:
namespace N1
{
class A<T>
{
class B {}
}
}
namespace N2
{
using W = N1.A; // Error, cannot name unbound generic type
using X = N1.A.B; // Error, cannot name unbound generic type
using Y = N1.A<int>; // Ok, can name closed constructed type
using Z<T> = N1.A<T>; // Error, using alias cannot have type parameters
}
A using_namespace_directive imports the types contained in a namespace into the immediately enclosing compilation unit or namespace body, enabling the identifier of each type to be used without qualification.
using_namespace_directive
: 'using' namespace_name ';'
;
Within member declarations in a compilation unit or namespace body that contains a using_namespace_directive, the types contained in the given namespace can be referenced directly. For example:
namespace N1.N2
{
class A {}
}
namespace N3
{
using N1.N2;
class B: A {}
}
Above, within member declarations in the N3
namespace, the type members of N1.N2
are directly available, and thus class N3.B
derives from class N1.N2.A
.
A using_namespace_directive imports the types contained in the given namespace, but specifically does not import nested namespaces. In the example
namespace N1.N2
{
class A {}
}
namespace N3
{
using N1;
class B: N2.A {} // Error, N2 unknown
}
the using_namespace_directive imports the types contained in N1
, but not the namespaces nested in N1
. Thus, the reference to N2.A
in the declaration of B
results in a compile-time error because no members named N2
are in scope.
Unlike a using_alias_directive, a using_namespace_directive may import types whose identifiers are already defined within the enclosing compilation unit or namespace body. In effect, names imported by a using_namespace_directive are hidden by similarly named members in the enclosing compilation unit or namespace body. For example:
namespace N1.N2
{
class A {}
class B {}
}
namespace N3
{
using N1.N2;
class A {}
}
Here, within member declarations in the N3
namespace, A
refers to N3.A
rather than N1.N2.A
.
When more than one namespace or type imported by using_namespace_directives or using_static_directives in the same compilation unit or namespace body contain types by the same name, references to that name as a type_name are considered ambiguous. In the example
namespace N1
{
class A {}
}
namespace N2
{
class A {}
}
namespace N3
{
using N1;
using N2;
class B: A {} // Error, A is ambiguous
}
both N1
and N2
contain a member A
, and because N3
imports both, referencing A
in N3
is a compile-time error. In this situation, the conflict can be resolved either through qualification of references to A
, or by introducing a using_alias_directive that picks a particular A
. For example:
namespace N3
{
using N1;
using N2;
using A = N1.A;
class B: A {} // A means N1.A
}
Furthermore, when more than one namespace or type imported by using_namespace_directives or using_static_directives in the same compilation unit or namespace body contain types or members by the same name, references to that name as a simple_name are considered ambiguous. In the example
namespace N1
{
class A {}
}
class C
{
public static int A
}
namespace N2
{
using N1;
using static C;
class B
{
void M()
{
A a = new A(); // Ok, A is unambiguous as a type-name
A.Equals(2); // Error, A is ambiguous as a simple-name
}
}
N1
contains a type member A
, and C
contains a static method A
, and because N2
imports both, referencing A
as a simple_name is ambiguous and a compile-time error.
Like a using_alias_directive, a using_namespace_directive does not contribute any new members to the underlying declaration space of the compilation unit or namespace, but rather affects only the compilation unit or namespace body in which it appears.
The namespace_name referenced by a using_namespace_directive is resolved in the same way as the namespace_or_type_name referenced by a using_alias_directive. Thus, using_namespace_directives in the same compilation unit or namespace body do not affect each other and can be written in any order.
A using_static_directive imports the nested types and static members contained directly in a type declaration into the immediately enclosing compilation unit or namespace body, enabling the identifier of each member and type to be used without qualification.
using_static_directive
: 'using' 'static' type_name ';'
;
Within member declarations in a compilation unit or namespace body that contains a using_static_directive, the accessible nested types and static members (except extension methods) contained directly in the declaration of the given type can be referenced directly. For example:
namespace N1
{
class A
{
public class B{}
public static B M(){ return new B(); }
}
}
namespace N2
{
using static N1.A;
class C
{
void N() { B b = M(); }
}
}
Above, within member declarations in the N2
namespace, the static members and nested types of N1.A
are directly available, and thus the method N
is able to reference both the B
and M
members of N1.A
.
A *using_static_directive` specifically does not import extension methods directly as static methods, but makes them available for extension method invocation (Extension method invocations). In the example
namespace N1
{
static class A
{
public static void M(this string s){}
}
}
namespace N2
{
using static N1.A;
class B
{
void N()
{
M("A"); // Error, M unknown
"B".M(); // Ok, M known as extension method
N1.A.M("C"); // Ok, fully qualified
}
}
}
the using_static_directive imports the extension method M
contained in N1.A
, but only as an extension method. Thus, the first reference to M
in the body of B.N
results in a compile-time error because no members named M
are in scope.
A using_static_directive only imports members and types declared directly in the given type, not members and types declared in base classes.
TODO: Example
Ambiguities between multiple using_namespace_directives and using_static_directives are discussed in Using namespace directives.
A namespace_member_declaration is either a namespace_declaration (Namespace declarations) or a type_declaration (Type declarations).
namespace_member_declaration
: namespace_declaration
| type_declaration
;
A compilation unit or a namespace body can contain namespace_member_declarations, and such declarations contribute new members to the underlying declaration space of the containing compilation unit or namespace body.
A type_declaration is a class_declaration (Class declarations), a struct_declaration (Struct declarations), an interface_declaration (Interface declarations), an enum_declaration (Enum declarations), or a delegate_declaration (Delegate declarations).
type_declaration
: class_declaration
| struct_declaration
| interface_declaration
| enum_declaration
| delegate_declaration
;
A type_declaration can occur as a top-level declaration in a compilation unit or as a member declaration within a namespace, class, or struct.
When a type declaration for a type T
occurs as a top-level declaration in a compilation unit, the fully qualified name of the newly declared type is simply T
. When a type declaration for a type T
occurs within a namespace, class, or struct, the fully qualified name of the newly declared type is N.T
, where N
is the fully qualified name of the containing namespace, class, or struct.
A type declared within a class or struct is called a nested type (Nested types).
The permitted access modifiers and the default access for a type declaration depend on the context in which the declaration takes place (Declared accessibility):
- Types declared in compilation units or namespaces can have
public
orinternal
access. The default isinternal
access. - Types declared in classes can have
public
,protected internal
,protected
,internal
, orprivate
access. The default isprivate
access. - Types declared in structs can have
public
,internal
, orprivate
access. The default isprivate
access.
The namespace alias qualifier ::
makes it possible to guarantee that type name lookups are unaffected by the introduction of new types and members. The namespace alias qualifier always appears between two identifiers referred to as the left-hand and right-hand identifiers. Unlike the regular .
qualifier, the left-hand identifier of the ::
qualifier is looked up only as an extern or using alias.
A qualified_alias_member is defined as follows:
qualified_alias_member
: identifier '::' identifier type_argument_list?
;
A qualified_alias_member can be used as a namespace_or_type_name (Namespace and type names) or as the left operand in a member_access (Member access).
A qualified_alias_member has one of two forms:
N::I<A1, ..., Ak>
, whereN
andI
represent identifiers, and<A1, ..., Ak>
is a type argument list. (K
is always at least one.)N::I
, whereN
andI
represent identifiers. (In this case,K
is considered to be zero.)
Using this notation, the meaning of a qualified_alias_member is determined as follows:
-
If
N
is the identifierglobal
, then the global namespace is searched forI
:- If the global namespace contains a namespace named
I
andK
is zero, then the qualified_alias_member refers to that namespace. - Otherwise, if the global namespace contains a non-generic type named
I
andK
is zero, then the qualified_alias_member refers to that type. - Otherwise, if the global namespace contains a type named
I
that hasK
type parameters, then the qualified_alias_member refers to that type constructed with the given type arguments. - Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.
- If the global namespace contains a namespace named
-
Otherwise, starting with the namespace declaration (Namespace declarations) immediately containing the qualified_alias_member (if any), continuing with each enclosing namespace declaration (if any), and ending with the compilation unit containing the qualified_alias_member, the following steps are evaluated until an entity is located:
- If the namespace declaration or compilation unit contains a using_alias_directive that associates
N
with a type, then the qualified_alias_member is undefined and a compile-time error occurs. - Otherwise, if the namespace declaration or compilation unit contains an extern_alias_directive or using_alias_directive that associates
N
with a namespace, then:- If the namespace associated with
N
contains a namespace namedI
andK
is zero, then the qualified_alias_member refers to that namespace. - Otherwise, if the namespace associated with
N
contains a non-generic type namedI
andK
is zero, then the qualified_alias_member refers to that type. - Otherwise, if the namespace associated with
N
contains a type namedI
that hasK
type parameters, then the qualified_alias_member refers to that type constructed with the given type arguments. - Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.
- If the namespace associated with
- If the namespace declaration or compilation unit contains a using_alias_directive that associates
-
Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.
Note that using the namespace alias qualifier with an alias that references a type causes a compile-time error. Also note that if the identifier N
is global
, then lookup is performed in the global namespace, even if there is a using alias associating global
with a type or namespace.
Each compilation unit and namespace body has a separate declaration space for extern aliases and using aliases. Thus, while the name of an extern alias or using alias must be unique within the set of extern aliases and using aliases declared in the immediately containing compilation unit or namespace body, an alias is permitted to have the same name as a type or namespace as long as it is used only with the ::
qualifier.
In the example
namespace N
{
public class A {}
public class B {}
}
namespace N
{
using A = System.IO;
class X
{
A.Stream s1; // Error, A is ambiguous
A::Stream s2; // Ok
}
}
the name A
has two possible meanings in the second namespace body because both the class A
and the using alias A
are in scope. For this reason, use of A
in the qualified name A.Stream
is ambiguous and causes a compile-time error to occur. However, use of A
with the ::
qualifier is not an error because A
is looked up only as a namespace alias.