-
Notifications
You must be signed in to change notification settings - Fork 98
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[CIR][ThroughMLIR] Lower CIR IV load with SCF IV move operation #729
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV. The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type. This comment lower CIR load IV_ADDR with ARITH addi SCF.IV, 0 So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.
bcardosolopes
approved these changes
Jul 10, 2024
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
Hugobros3
pushed a commit
to shady-gang/clangir
that referenced
this pull request
Oct 2, 2024
…#729) Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV. The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type. This comment lower CIR load IV_ADDR with ARITH addi SCF.IV, 0 So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.
smeenai
pushed a commit
to smeenai/clangir
that referenced
this pull request
Oct 9, 2024
…#729) Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV. The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type. This comment lower CIR load IV_ADDR with ARITH addi SCF.IV, 0 So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.
smeenai
pushed a commit
to smeenai/clangir
that referenced
this pull request
Oct 9, 2024
…#729) Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV. The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type. This comment lower CIR load IV_ADDR with ARITH addi SCF.IV, 0 So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.
keryell
pushed a commit
to keryell/clangir
that referenced
this pull request
Oct 19, 2024
…#729) Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV. The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type. This comment lower CIR load IV_ADDR with ARITH addi SCF.IV, 0 So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.
lanza
pushed a commit
that referenced
this pull request
Nov 5, 2024
Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV. The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type. This comment lower CIR load IV_ADDR with ARITH addi SCF.IV, 0 So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Previously, when lowering induction variable in forOp, we removed the IV load and replaced the users with SCF.IV.
The CIR IV users might still CIR operations during lowering forOp. It caused the issue that CIR operation contained SCF.IV as operand which is MLIR integer type instead CIR type.
This comment lower
CIR load IV_ADDR
with
ARITH addi SCF.IV, 0
So SCF.IV can be propagated by OpAdaptor when lowering individual IV users. This simplifies the lowering and fixes the issue. The redundant arith.addi can be removed by later MLIR passes.