@@ -290,7 +290,7 @@ static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
290290 cl::desc(" A flag that overrides the target's max interleave factor for "
291291 " vectorized loops." ));
292292
293- cl::opt<unsigned > ForceTargetInstructionCost (
293+ static cl::opt<unsigned > ForceTargetInstructionCost (
294294 " force-target-instruction-cost" , cl::init(0 ), cl::Hidden,
295295 cl::desc(" A flag that overrides the target's expected cost for "
296296 " an instruction to a single constant value. Mostly "
@@ -412,6 +412,14 @@ static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
412412 return DL.getTypeAllocSizeInBits (Ty) != DL.getTypeSizeInBits (Ty);
413413}
414414
415+ // / A helper function that returns the reciprocal of the block probability of
416+ // / predicated blocks. If we return X, we are assuming the predicated block
417+ // / will execute once for every X iterations of the loop header.
418+ // /
419+ // / TODO: We should use actual block probability here, if available. Currently,
420+ // / we always assume predicated blocks have a 50% chance of executing.
421+ static unsigned getReciprocalPredBlockProb () { return 2 ; }
422+
415423// / Returns "best known" trip count for the specified loop \p L as defined by
416424// / the following procedure:
417425// / 1) Returns exact trip count if it is known.
@@ -1613,16 +1621,6 @@ class LoopVectorizationCostModel {
16131621 // / \p VF is the vectorization factor chosen for the original loop.
16141622 bool isEpilogueVectorizationProfitable (const ElementCount VF) const ;
16151623
1616- // / Return the cost of instructions in an inloop reduction pattern, if I is
1617- // / part of that pattern.
1618- std::optional<InstructionCost>
1619- getReductionPatternCost (Instruction *I, ElementCount VF, Type *VectorTy,
1620- TTI::TargetCostKind CostKind) const ;
1621-
1622- // / Returns the execution time cost of an instruction for a given vector
1623- // / width. Vector width of one means scalar.
1624- VectorizationCostTy getInstructionCost (Instruction *I, ElementCount VF);
1625-
16261624private:
16271625 unsigned NumPredStores = 0 ;
16281626
@@ -1648,11 +1646,21 @@ class LoopVectorizationCostModel {
16481646 // / of elements.
16491647 ElementCount getMaxLegalScalableVF (unsigned MaxSafeElements);
16501648
1649+ // / Returns the execution time cost of an instruction for a given vector
1650+ // / width. Vector width of one means scalar.
1651+ VectorizationCostTy getInstructionCost (Instruction *I, ElementCount VF);
1652+
16511653 // / The cost-computation logic from getInstructionCost which provides
16521654 // / the vector type as an output parameter.
16531655 InstructionCost getInstructionCost (Instruction *I, ElementCount VF,
16541656 Type *&VectorTy);
16551657
1658+ // / Return the cost of instructions in an inloop reduction pattern, if I is
1659+ // / part of that pattern.
1660+ std::optional<InstructionCost>
1661+ getReductionPatternCost (Instruction *I, ElementCount VF, Type *VectorTy,
1662+ TTI::TargetCostKind CostKind) const ;
1663+
16561664 // / Calculate vectorization cost of memory instruction \p I.
16571665 InstructionCost getMemoryInstructionCost (Instruction *I, ElementCount VF);
16581666
@@ -7280,10 +7288,7 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
72807288 if (!MaxFactors.hasVector ())
72817289 return VectorizationFactor::Disabled ();
72827290
7283- // Select the optimal vectorization factor according to the legacy cost-model.
7284- // This is now only used to verify the decisions by the new VPlan-based
7285- // cost-model and will be retired once the VPlan-based cost-model is
7286- // stabilized.
7291+ // Select the optimal vectorization factor.
72877292 VectorizationFactor VF = selectVectorizationFactor (VFCandidates);
72887293 assert ((VF.Width .isScalar () || VF.ScalarCost > 0 ) && " when vectorizing, the scalar cost must be non-zero." );
72897294 if (!hasPlanWithVF (VF.Width )) {
@@ -7294,166 +7299,6 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
72947299 return VF;
72957300}
72967301
7297- InstructionCost VPCostContext::getLegacyCost (Instruction *UI,
7298- ElementCount VF) const {
7299- return CM.getInstructionCost (UI, VF).first ;
7300- }
7301-
7302- bool VPCostContext::skipCostComputation (Instruction *UI, bool IsVector) const {
7303- return (IsVector && CM.VecValuesToIgnore .contains (UI)) ||
7304- SkipCostComputation.contains (UI);
7305- }
7306-
7307- InstructionCost LoopVectorizationPlanner::cost (VPlan &Plan,
7308- ElementCount VF) const {
7309- InstructionCost Cost = 0 ;
7310- LLVMContext &LLVMCtx = OrigLoop->getHeader ()->getContext ();
7311- VPCostContext CostCtx (CM.TTI , Legal->getWidestInductionType (), LLVMCtx, CM);
7312-
7313- // Cost modeling for inductions is inaccurate in the legacy cost model
7314- // compared to the recipes that are generated. To match here initially during
7315- // VPlan cost model bring up directly use the induction costs from the legacy
7316- // cost model. Note that we do this as pre-processing; the VPlan may not have
7317- // any recipes associated with the original induction increment instruction.
7318- // We precompute the cost of both induction increment instructions that are
7319- // represented by recipes and those that are not, to avoid distinguishing
7320- // between them here, and skip all recipes that represent induction increments
7321- // (the former case) later on, if they exist, to avoid counting them twice.
7322- // TODO: Switch to more accurate costing based on VPlan.
7323- for (const auto &[IV, _] : Legal->getInductionVars ()) {
7324- Instruction *IVInc = cast<Instruction>(
7325- IV->getIncomingValueForBlock (OrigLoop->getLoopLatch ()));
7326- assert (!CostCtx.SkipCostComputation .contains (IVInc) &&
7327- " Same IV increment for multiple inductions?" );
7328- CostCtx.SkipCostComputation .insert (IVInc);
7329- InstructionCost InductionCost = CostCtx.getLegacyCost (IVInc, VF);
7330- LLVM_DEBUG ({
7331- dbgs () << " Cost of " << InductionCost << " for VF " << VF
7332- << " :\n induction increment " << *IVInc << " \n " ;
7333- IVInc->dump ();
7334- });
7335- Cost += InductionCost;
7336- }
7337-
7338- // / Compute the cost of all exiting conditions of the loop using the legacy
7339- // / cost model. This is to match the legacy behavior, which adds the cost of
7340- // / all exit conditions. Note that this over-estimates the cost, as there will
7341- // / be a single condition to control the vector loop.
7342- SmallVector<BasicBlock *> Exiting;
7343- CM.TheLoop ->getExitingBlocks (Exiting);
7344- // Add the cost of all exit conditions.
7345- for (BasicBlock *EB : Exiting) {
7346- auto *Term = dyn_cast<BranchInst>(EB->getTerminator ());
7347- if (!Term)
7348- continue ;
7349- if (auto *CondI = dyn_cast<Instruction>(Term->getOperand (0 ))) {
7350- assert (!CostCtx.SkipCostComputation .contains (CondI) &&
7351- " Condition already skipped?" );
7352- CostCtx.SkipCostComputation .insert (CondI);
7353- Cost += CostCtx.getLegacyCost (CondI, VF);
7354- }
7355- }
7356-
7357- // The legacy cost model has special logic to compute the cost of in-loop
7358- // reductions, which may be smaller than the sum of all instructions involved
7359- // in the reduction. For AnyOf reductions, VPlan codegen may remove the select
7360- // which the legacy cost model uses to assign cost. Pre-compute their costs
7361- // for now.
7362- // TODO: Switch to costing based on VPlan once the logic has been ported.
7363- for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars ()) {
7364- if (!CM.isInLoopReduction (RedPhi) &&
7365- !RecurrenceDescriptor::isAnyOfRecurrenceKind (
7366- RdxDesc.getRecurrenceKind ()))
7367- continue ;
7368-
7369- // AnyOf reduction codegen may remove the select. To match the legacy cost
7370- // model, pre-compute the cost for AnyOf reductions here.
7371- if (RecurrenceDescriptor::isAnyOfRecurrenceKind (
7372- RdxDesc.getRecurrenceKind ())) {
7373- auto *Select = cast<SelectInst>(*find_if (
7374- RedPhi->users (), [](User *U) { return isa<SelectInst>(U); }));
7375- assert (!CostCtx.SkipCostComputation .contains (Select) &&
7376- " reduction op visited multiple times" );
7377- CostCtx.SkipCostComputation .insert (Select);
7378- auto ReductionCost = CostCtx.getLegacyCost (Select, VF);
7379- LLVM_DEBUG (dbgs () << " Cost of " << ReductionCost << " for VF " << VF
7380- << " :\n any-of reduction " << *Select << " \n " );
7381- Cost += ReductionCost;
7382- continue ;
7383- }
7384-
7385- const auto &ChainOps = RdxDesc.getReductionOpChain (RedPhi, OrigLoop);
7386- SetVector<Instruction *> ChainOpsAndOperands (ChainOps.begin (),
7387- ChainOps.end ());
7388- // Also include the operands of instructions in the chain, as the cost-model
7389- // may mark extends as free.
7390- for (auto *ChainOp : ChainOps) {
7391- for (Value *Op : ChainOp->operands ()) {
7392- if (auto *I = dyn_cast<Instruction>(Op))
7393- ChainOpsAndOperands.insert (I);
7394- }
7395- }
7396-
7397- // Pre-compute the cost for I, if it has a reduction pattern cost.
7398- for (Instruction *I : ChainOpsAndOperands) {
7399- auto ReductionCost = CM.getReductionPatternCost (
7400- I, VF, ToVectorTy (I->getType (), VF), TTI::TCK_RecipThroughput);
7401- if (!ReductionCost)
7402- continue ;
7403-
7404- assert (!CostCtx.SkipCostComputation .contains (I) &&
7405- " reduction op visited multiple times" );
7406- CostCtx.SkipCostComputation .insert (I);
7407- LLVM_DEBUG (dbgs () << " Cost of " << ReductionCost << " for VF " << VF
7408- << " :\n in-loop reduction " << *I << " \n " );
7409- Cost += *ReductionCost;
7410- }
7411- }
7412-
7413- // Now compute and add the VPlan-based cost.
7414- Cost += Plan.cost (VF, CostCtx);
7415- LLVM_DEBUG (dbgs () << " Cost for VF " << VF << " : " << Cost << " \n " );
7416- return Cost;
7417- }
7418-
7419- VPlan &LoopVectorizationPlanner::getBestPlan () const {
7420- // If there is a single VPlan with a single VF, return it directly.
7421- VPlan &FirstPlan = *VPlans[0 ];
7422- if (VPlans.size () == 1 && size (FirstPlan.vectorFactors ()) == 1 )
7423- return FirstPlan;
7424-
7425- VPlan *BestPlan = &FirstPlan;
7426- ElementCount ScalarVF = ElementCount::getFixed (1 );
7427- assert (hasPlanWithVF (ScalarVF) &&
7428- " More than a single plan/VF w/o any plan having scalar VF" );
7429-
7430- InstructionCost ScalarCost = cost (getBestPlanFor (ScalarVF), ScalarVF);
7431- VectorizationFactor BestFactor (ScalarVF, ScalarCost, ScalarCost);
7432-
7433- bool ForceVectorization = Hints.getForce () == LoopVectorizeHints::FK_Enabled;
7434- if (ForceVectorization) {
7435- // Ignore scalar width, because the user explicitly wants vectorization.
7436- // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7437- // evaluation.
7438- BestFactor.Cost = InstructionCost::getMax ();
7439- }
7440-
7441- for (auto &P : VPlans) {
7442- for (ElementCount VF : P->vectorFactors ()) {
7443- if (VF.isScalar ())
7444- continue ;
7445- InstructionCost Cost = cost (*P, VF);
7446- VectorizationFactor CurrentFactor (VF, Cost, ScalarCost);
7447- if (isMoreProfitable (CurrentFactor, BestFactor)) {
7448- BestFactor = CurrentFactor;
7449- BestPlan = &*P;
7450- }
7451- }
7452- }
7453- BestPlan->setVF (BestFactor.Width );
7454- return *BestPlan;
7455- }
7456-
74577302VPlan &LoopVectorizationPlanner::getBestPlanFor (ElementCount VF) const {
74587303 assert (count_if (VPlans,
74597304 [VF](const VPlanPtr &Plan) { return Plan->hasVF (VF); }) ==
@@ -10312,15 +10157,8 @@ bool LoopVectorizePass::processLoop(Loop *L) {
1031210157 VF.MinProfitableTripCount , IC, &LVL, &CM, BFI,
1031310158 PSI, Checks);
1031410159
10315- VPlan &BestPlan = LVP.getBestPlan ();
10316- assert (size (BestPlan.vectorFactors ()) == 1 &&
10317- " Plan should have a single VF" );
10318- ElementCount Width = *BestPlan.vectorFactors ().begin ();
10319- LLVM_DEBUG (dbgs () << " VF picked by VPlan cost model: " << Width
10320- << " \n " );
10321- assert (VF.Width == Width &&
10322- " VPlan cost model and legacy cost model disagreed" );
10323- LVP.executePlan (Width, IC, BestPlan, LB, DT, false );
10160+ VPlan &BestPlan = LVP.getBestPlanFor (VF.Width );
10161+ LVP.executePlan (VF.Width , IC, BestPlan, LB, DT, false );
1032410162 ++LoopsVectorized;
1032510163
1032610164 // Add metadata to disable runtime unrolling a scalar loop when there
0 commit comments