-
Notifications
You must be signed in to change notification settings - Fork 12.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[flang][cuda] Add specialized gpu.launch_func conversion #113493
Conversation
@llvm/pr-subscribers-flang-fir-hlfir @llvm/pr-subscribers-flang-runtime Author: Valentin Clement (バレンタイン クレメン) (clementval) ChangesCUDA Fortran has a constructor that register the fatbinary and the kernel functions. To launch a kernel it does not need to relay on the MLIR runtime and the lowering of the gpu.launch_func is therefore different. This patch adds a conversion pattern to convert gpu.launch_func to the Patch is 20.77 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/113493.diff 9 Files Affected:
diff --git a/flang/include/flang/Optimizer/Transforms/CUFGPUToLLVMConversion.h b/flang/include/flang/Optimizer/Transforms/CUFGPUToLLVMConversion.h
new file mode 100644
index 00000000000000..7d76c1f4e52187
--- /dev/null
+++ b/flang/include/flang/Optimizer/Transforms/CUFGPUToLLVMConversion.h
@@ -0,0 +1,28 @@
+//===------- Optimizer/Transforms/CUFGPUToLLVMConversion.h ------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef FORTRAN_OPTIMIZER_TRANSFORMS_CUFGPUTOLLVMCONVERSION_H_
+#define FORTRAN_OPTIMIZER_TRANSFORMS_CUFGPUTOLLVMCONVERSION_H_
+
+#include "mlir/Pass/Pass.h"
+#include "mlir/Pass/PassRegistry.h"
+#include "mlir/Transforms/DialectConversion.h"
+
+namespace fir {
+class LLVMTypeConverter;
+}
+
+namespace cuf {
+
+void populateCUFGPUToLLVMConversionPatterns(
+ const fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
+ mlir::PatternBenefit benefit = 1);
+
+} // namespace cuf
+
+#endif // FORTRAN_OPTIMIZER_TRANSFORMS_CUFGPUTOLLVMCONVERSION_H_
diff --git a/flang/include/flang/Optimizer/Transforms/Passes.h b/flang/include/flang/Optimizer/Transforms/Passes.h
index 5d3067aa359813..e8f0a8444a31a1 100644
--- a/flang/include/flang/Optimizer/Transforms/Passes.h
+++ b/flang/include/flang/Optimizer/Transforms/Passes.h
@@ -41,6 +41,7 @@ namespace fir {
#define GEN_PASS_DECL_CFGCONVERSION
#define GEN_PASS_DECL_CUFADDCONSTRUCTOR
#define GEN_PASS_DECL_CUFDEVICEGLOBAL
+#define GEN_PASS_DECL_CUFGPUTOLLVMCONVERSION
#define GEN_PASS_DECL_CUFOPCONVERSION
#define GEN_PASS_DECL_EXTERNALNAMECONVERSION
#define GEN_PASS_DECL_MEMREFDATAFLOWOPT
diff --git a/flang/include/flang/Optimizer/Transforms/Passes.td b/flang/include/flang/Optimizer/Transforms/Passes.td
index 2efa543ca07148..a41f0f348f27a6 100644
--- a/flang/include/flang/Optimizer/Transforms/Passes.td
+++ b/flang/include/flang/Optimizer/Transforms/Passes.td
@@ -443,4 +443,11 @@ def CUFAddConstructor : Pass<"cuf-add-constructor", "mlir::ModuleOp"> {
];
}
+def CUFGPUToLLVMConversion : Pass<"cuf-gpu-convert-to-llvm", "mlir::ModuleOp"> {
+ let summary = "Convert some GPU operations lowered from CUF to runtime calls";
+ let dependentDialects = [
+ "mlir::LLVM::LLVMDialect"
+ ];
+}
+
#endif // FLANG_OPTIMIZER_TRANSFORMS_PASSES
diff --git a/flang/lib/Optimizer/Transforms/CMakeLists.txt b/flang/lib/Optimizer/Transforms/CMakeLists.txt
index 8f4f731e009221..d20d3bc4108ce9 100644
--- a/flang/lib/Optimizer/Transforms/CMakeLists.txt
+++ b/flang/lib/Optimizer/Transforms/CMakeLists.txt
@@ -12,6 +12,7 @@ add_flang_library(FIRTransforms
CUFAddConstructor.cpp
CUFDeviceGlobal.cpp
CUFOpConversion.cpp
+ CUFGPUToLLVMConversion.cpp
ArrayValueCopy.cpp
ExternalNameConversion.cpp
MemoryUtils.cpp
diff --git a/flang/lib/Optimizer/Transforms/CUFGPUToLLVMConversion.cpp b/flang/lib/Optimizer/Transforms/CUFGPUToLLVMConversion.cpp
new file mode 100644
index 00000000000000..5645ce6e6858c8
--- /dev/null
+++ b/flang/lib/Optimizer/Transforms/CUFGPUToLLVMConversion.cpp
@@ -0,0 +1,180 @@
+//===-- CUFGPUToLLVMConversion.cpp ----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "flang/Optimizer/Transforms/CUFGPUToLLVMConversion.h"
+#include "flang/Common/Fortran.h"
+#include "flang/Optimizer/CodeGen/TypeConverter.h"
+#include "flang/Optimizer/Support/DataLayout.h"
+#include "flang/Runtime/CUDA/common.h"
+#include "mlir/Conversion/LLVMCommon/Pattern.h"
+#include "mlir/Dialect/GPU/IR/GPUDialect.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/Support/FormatVariadic.h"
+
+namespace fir {
+#define GEN_PASS_DEF_CUFGPUTOLLVMCONVERSION
+#include "flang/Optimizer/Transforms/Passes.h.inc"
+} // namespace fir
+
+using namespace fir;
+using namespace mlir;
+using namespace Fortran::runtime;
+
+namespace {
+
+static mlir::Value createKernelArgArray(mlir::Location loc,
+ mlir::ValueRange operands,
+ mlir::PatternRewriter &rewriter) {
+
+ auto *ctx = rewriter.getContext();
+ llvm::SmallVector<mlir::Type> structTypes(operands.size(), nullptr);
+
+ for (auto [i, arg] : llvm::enumerate(operands))
+ structTypes[i] = arg.getType();
+
+ auto structTy = mlir::LLVM::LLVMStructType::getLiteral(ctx, structTypes);
+ auto ptrTy = mlir::LLVM::LLVMPointerType::get(rewriter.getContext());
+ mlir::Type i32Ty = rewriter.getI32Type();
+ auto one = rewriter.create<mlir::LLVM::ConstantOp>(
+ loc, i32Ty, rewriter.getIntegerAttr(i32Ty, 1));
+ mlir::Value argStruct =
+ rewriter.create<mlir::LLVM::AllocaOp>(loc, ptrTy, structTy, one);
+ auto size = rewriter.create<mlir::LLVM::ConstantOp>(
+ loc, i32Ty, rewriter.getIntegerAttr(i32Ty, structTypes.size()));
+ mlir::Value argArray =
+ rewriter.create<mlir::LLVM::AllocaOp>(loc, ptrTy, ptrTy, size);
+
+ for (auto [i, arg] : llvm::enumerate(operands)) {
+ auto indice = rewriter.create<mlir::LLVM::ConstantOp>(
+ loc, i32Ty, rewriter.getIntegerAttr(i32Ty, i));
+ mlir::Value structMember = rewriter.create<LLVM::GEPOp>(
+ loc, ptrTy, structTy, argStruct, mlir::ArrayRef<mlir::Value>({indice}));
+ rewriter.create<LLVM::StoreOp>(loc, arg, structMember);
+ mlir::Value arrayMember = rewriter.create<LLVM::GEPOp>(
+ loc, ptrTy, structTy, argArray, mlir::ArrayRef<mlir::Value>({indice}));
+ rewriter.create<LLVM::StoreOp>(loc, structMember, arrayMember);
+ }
+ return argArray;
+}
+
+struct GPULaunchKernelConversion
+ : public mlir::ConvertOpToLLVMPattern<mlir::gpu::LaunchFuncOp> {
+ explicit GPULaunchKernelConversion(
+ const fir::LLVMTypeConverter &typeConverter, mlir::PatternBenefit benefit)
+ : mlir::ConvertOpToLLVMPattern<mlir::gpu::LaunchFuncOp>(typeConverter,
+ benefit) {}
+
+ using OpAdaptor = typename mlir::gpu::LaunchFuncOp::Adaptor;
+
+ mlir::LogicalResult
+ matchAndRewrite(mlir::gpu::LaunchFuncOp op, OpAdaptor adaptor,
+ mlir::ConversionPatternRewriter &rewriter) const override {
+
+ if (op.hasClusterSize()) {
+ return mlir::failure();
+ }
+
+ mlir::Location loc = op.getLoc();
+ auto *ctx = rewriter.getContext();
+ mlir::ModuleOp mod = op->getParentOfType<mlir::ModuleOp>();
+ mlir::Value dynamicMemorySize = op.getDynamicSharedMemorySize();
+ mlir::Type i32Ty = rewriter.getI32Type();
+ if (!dynamicMemorySize)
+ dynamicMemorySize = rewriter.create<mlir::LLVM::ConstantOp>(
+ loc, i32Ty, rewriter.getIntegerAttr(i32Ty, 0));
+
+ mlir::Value kernelArgs =
+ createKernelArgArray(loc, adaptor.getKernelOperands(), rewriter);
+
+ auto ptrTy = mlir::LLVM::LLVMPointerType::get(rewriter.getContext());
+ auto kernel = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(op.getKernelName());
+ mlir::Value kernelPtr;
+ if (!kernel) {
+ auto funcOp = mod.lookupSymbol<mlir::func::FuncOp>(op.getKernelName());
+ if (!funcOp)
+ return mlir::failure();
+ kernelPtr =
+ rewriter.create<LLVM::AddressOfOp>(loc, ptrTy, funcOp.getName());
+ } else {
+ kernelPtr =
+ rewriter.create<LLVM::AddressOfOp>(loc, ptrTy, kernel.getName());
+ }
+
+ auto funcOp = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(
+ RTNAME_STRING(CUFLaunchKernel));
+
+ auto llvmIntPtrType = mlir::IntegerType::get(
+ ctx, this->getTypeConverter()->getPointerBitwidth(0));
+ auto voidTy = mlir::LLVM::LLVMVoidType::get(ctx);
+ auto funcTy = mlir::LLVM::LLVMFunctionType::get(
+ voidTy,
+ {ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
+ llvmIntPtrType, llvmIntPtrType, i32Ty, ptrTy, ptrTy},
+ /*isVarArg=*/false);
+
+ auto cufLaunchKernel = mlir::SymbolRefAttr::get(
+ mod.getContext(), RTNAME_STRING(CUFLaunchKernel));
+ if (!funcOp) {
+ mlir::OpBuilder::InsertionGuard insertGuard(rewriter);
+ rewriter.setInsertionPointToStart(mod.getBody());
+ auto launchKernelFuncOp = rewriter.create<mlir::LLVM::LLVMFuncOp>(
+ loc, RTNAME_STRING(CUFLaunchKernel), funcTy);
+ launchKernelFuncOp.setVisibility(mlir::SymbolTable::Visibility::Private);
+ }
+
+ mlir::Value nullPtr = rewriter.create<LLVM::ZeroOp>(loc, ptrTy);
+
+ rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
+ op, funcTy, cufLaunchKernel,
+ mlir::ValueRange{kernelPtr, adaptor.getGridSizeX(),
+ adaptor.getGridSizeY(), adaptor.getGridSizeZ(),
+ adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
+ adaptor.getBlockSizeZ(), dynamicMemorySize, kernelArgs,
+ nullPtr});
+
+ return mlir::success();
+ }
+};
+
+class CUFGPUToLLVMConversion
+ : public fir::impl::CUFGPUToLLVMConversionBase<CUFGPUToLLVMConversion> {
+public:
+ void runOnOperation() override {
+ auto *ctx = &getContext();
+ mlir::RewritePatternSet patterns(ctx);
+ mlir::ConversionTarget target(*ctx);
+
+ mlir::Operation *op = getOperation();
+ mlir::ModuleOp module = mlir::dyn_cast<mlir::ModuleOp>(op);
+ if (!module)
+ return signalPassFailure();
+
+ std::optional<mlir::DataLayout> dl =
+ fir::support::getOrSetDataLayout(module, /*allowDefaultLayout=*/false);
+ fir::LLVMTypeConverter typeConverter(module, /*applyTBAA=*/false,
+ /*forceUnifiedTBAATree=*/false, *dl);
+ cuf::populateCUFGPUToLLVMConversionPatterns(typeConverter, patterns);
+ target.addIllegalOp<mlir::gpu::LaunchFuncOp>();
+ target.addLegalDialect<mlir::LLVM::LLVMDialect>();
+ if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
+ std::move(patterns)))) {
+ mlir::emitError(mlir::UnknownLoc::get(ctx),
+ "error in CUF GPU op conversion\n");
+ signalPassFailure();
+ }
+ }
+};
+} // namespace
+
+void cuf::populateCUFGPUToLLVMConversionPatterns(
+ const fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
+ mlir::PatternBenefit benefit) {
+ patterns.add<GPULaunchKernelConversion>(converter, benefit);
+}
diff --git a/flang/lib/Optimizer/Transforms/CUFOpConversion.cpp b/flang/lib/Optimizer/Transforms/CUFOpConversion.cpp
index 069d88e0afca47..9c2b882c7f46fe 100644
--- a/flang/lib/Optimizer/Transforms/CUFOpConversion.cpp
+++ b/flang/lib/Optimizer/Transforms/CUFOpConversion.cpp
@@ -20,6 +20,7 @@
#include "flang/Runtime/CUDA/descriptor.h"
#include "flang/Runtime/CUDA/memory.h"
#include "flang/Runtime/allocatable.h"
+#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
diff --git a/flang/runtime/CUDA/registration.cpp b/flang/runtime/CUDA/registration.cpp
index 22d43a7dc57a3a..20d274c4d8d1c2 100644
--- a/flang/runtime/CUDA/registration.cpp
+++ b/flang/runtime/CUDA/registration.cpp
@@ -7,6 +7,8 @@
//===----------------------------------------------------------------------===//
#include "flang/Runtime/CUDA/registration.h"
+#include "../terminator.h"
+#include "flang/Runtime/CUDA/common.h"
#include "cuda_runtime.h"
@@ -31,5 +33,7 @@ void RTDEF(CUFRegisterFunction)(
__cudaRegisterFunction(module, fctSym, fctName, fctName, -1, (uint3 *)0,
(uint3 *)0, (dim3 *)0, (dim3 *)0, (int *)0);
}
-}
+
+} // extern "C"
+
} // namespace Fortran::runtime::cuda
diff --git a/flang/test/Fir/CUDA/cuda-gpu-launch-func.mlir b/flang/test/Fir/CUDA/cuda-gpu-launch-func.mlir
new file mode 100644
index 00000000000000..f10bd82f978dc4
--- /dev/null
+++ b/flang/test/Fir/CUDA/cuda-gpu-launch-func.mlir
@@ -0,0 +1,104 @@
+// RUN: fir-opt --cuf-gpu-convert-to-llvm %s | FileCheck %s
+
+module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 (git@github.com:clementval/llvm-project.git ddcfd4d2dc17bf66cee8c3ef6284118684a2b0e6)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
+ llvm.func @_QMmod1Phost_sub() {
+ %0 = llvm.mlir.constant(1 : i32) : i32
+ %1 = llvm.alloca %0 x !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)> {alignment = 8 : i64} : (i32) -> !llvm.ptr
+ %2 = llvm.mlir.constant(40 : i64) : i64
+ %3 = llvm.mlir.constant(16 : i32) : i32
+ %4 = llvm.mlir.constant(25 : i32) : i32
+ %5 = llvm.mlir.constant(21 : i32) : i32
+ %6 = llvm.mlir.constant(17 : i32) : i32
+ %7 = llvm.mlir.constant(1 : index) : i64
+ %8 = llvm.mlir.constant(27 : i32) : i32
+ %9 = llvm.mlir.constant(6 : i32) : i32
+ %10 = llvm.mlir.constant(1 : i32) : i32
+ %11 = llvm.mlir.constant(0 : i32) : i32
+ %12 = llvm.mlir.constant(10 : index) : i64
+ %13 = llvm.mlir.addressof @_QQclX91d13f6e74caa2f03965d7a7c6a8fdd5 : !llvm.ptr
+ %14 = llvm.call @_FortranACUFMemAlloc(%2, %11, %13, %6) : (i64, i32, !llvm.ptr, i32) -> !llvm.ptr
+ %15 = llvm.mlir.constant(10 : index) : i64
+ %16 = llvm.mlir.constant(1 : index) : i64
+ %17 = llvm.alloca %15 x i32 : (i64) -> !llvm.ptr
+ %18 = llvm.mlir.undef : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %19 = llvm.insertvalue %17, %18[0] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %20 = llvm.insertvalue %17, %19[1] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %21 = llvm.mlir.constant(0 : index) : i64
+ %22 = llvm.insertvalue %21, %20[2] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %23 = llvm.insertvalue %15, %22[3, 0] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %24 = llvm.insertvalue %16, %23[4, 0] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %25 = llvm.extractvalue %24[1] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %26 = llvm.mlir.undef : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %27 = llvm.insertvalue %25, %26[0] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %28 = llvm.insertvalue %25, %27[1] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %29 = llvm.mlir.constant(0 : index) : i64
+ %30 = llvm.insertvalue %29, %28[2] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %31 = llvm.mlir.constant(10 : index) : i64
+ %32 = llvm.insertvalue %31, %30[3, 0] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %33 = llvm.mlir.constant(1 : index) : i64
+ %34 = llvm.insertvalue %33, %32[4, 0] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %35 = llvm.mlir.constant(1 : index) : i64
+ %36 = llvm.mlir.constant(11 : index) : i64
+ %37 = llvm.mlir.constant(1 : index) : i64
+ llvm.br ^bb1(%35 : i64)
+ ^bb1(%38: i64): // 2 preds: ^bb0, ^bb2
+ %39 = llvm.icmp "slt" %38, %36 : i64
+ llvm.cond_br %39, ^bb2, ^bb3
+ ^bb2: // pred: ^bb1
+ %40 = llvm.mlir.constant(-1 : index) : i64
+ %41 = llvm.add %38, %40 : i64
+ %42 = llvm.extractvalue %34[1] : !llvm.struct<(ptr, ptr, i64, array<1 x i64>, array<1 x i64>)>
+ %43 = llvm.getelementptr %42[%41] : (!llvm.ptr, i64) -> !llvm.ptr, i32
+ llvm.store %11, %43 : i32, !llvm.ptr
+ %44 = llvm.add %38, %37 : i64
+ llvm.br ^bb1(%44 : i64)
+ ^bb3: // pred: ^bb1
+ %45 = llvm.call @_FortranACUFDataTransferPtrPtr(%14, %25, %2, %11, %13, %5) : (!llvm.ptr, !llvm.ptr, i64, i32, !llvm.ptr, i32) -> !llvm.struct<()>
+ gpu.launch_func @cuda_device_mod::@_QMmod1Psub1 blocks in (%7, %7, %7) threads in (%12, %7, %7) : i64 dynamic_shared_memory_size %11 args(%14 : !llvm.ptr)
+ %46 = llvm.call @_FortranACUFDataTransferPtrPtr(%25, %14, %2, %10, %13, %4) : (!llvm.ptr, !llvm.ptr, i64, i32, !llvm.ptr, i32) -> !llvm.struct<()>
+ %47 = llvm.call @_FortranAioBeginExternalListOutput(%9, %13, %8) {fastmathFlags = #llvm.fastmath<contract>} : (i32, !llvm.ptr, i32) -> !llvm.ptr
+ %48 = llvm.mlir.constant(9 : i32) : i32
+ %49 = llvm.mlir.zero : !llvm.ptr
+ %50 = llvm.getelementptr %49[1] : (!llvm.ptr) -> !llvm.ptr, i32
+ %51 = llvm.ptrtoint %50 : !llvm.ptr to i64
+ %52 = llvm.mlir.undef : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %53 = llvm.insertvalue %51, %52[1] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %54 = llvm.mlir.constant(20240719 : i32) : i32
+ %55 = llvm.insertvalue %54, %53[2] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %56 = llvm.mlir.constant(1 : i32) : i32
+ %57 = llvm.trunc %56 : i32 to i8
+ %58 = llvm.insertvalue %57, %55[3] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %59 = llvm.trunc %48 : i32 to i8
+ %60 = llvm.insertvalue %59, %58[4] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %61 = llvm.mlir.constant(0 : i32) : i32
+ %62 = llvm.trunc %61 : i32 to i8
+ %63 = llvm.insertvalue %62, %60[5] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %64 = llvm.mlir.constant(0 : i32) : i32
+ %65 = llvm.trunc %64 : i32 to i8
+ %66 = llvm.insertvalue %65, %63[6] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %67 = llvm.mlir.constant(0 : i64) : i64
+ %68 = llvm.mlir.constant(1 : i64) : i64
+ %69 = llvm.insertvalue %68, %66[7, 0, 0] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %70 = llvm.insertvalue %12, %69[7, 0, 1] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %71 = llvm.insertvalue %51, %70[7, 0, 2] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ %72 = llvm.mul %51, %12 : i64
+ %73 = llvm.insertvalue %25, %71[0] : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>
+ llvm.store %73, %1 : !llvm.struct<(ptr, i64, i32, i8, i8, i8, i8, array<1 x array<3 x i64>>)>, !llvm.ptr
+ llvm.return
+ }
+ llvm.func @_QMmod1Psub1(!llvm.ptr) -> ()
+ llvm.mlir.global linkonce constant @_QQclX91d13f6e74caa2f03965d7a7c6a8fdd5() {addr_space = 0 : i32} : !llvm.array<2 x i8> {
+ %0 = llvm.mlir.constant("a\00") : !llvm.array<2 x i8>
+ llvm.return %0 : !llvm.array<2 x i8>
+ }
+ llvm.func @_FortranAioBeginExternalListOutput(i32, !llvm.ptr, i32) -> !llvm.ptr attributes {fir.io, fir.runtime, sym_visibility = "private"}
+ llvm.func @_FortranACUFMemAlloc(i64, i32, !llvm.ptr, i32) -> !llvm.ptr attributes {fir.runtime, sym_visibility = "private"}
+ llvm.func @_FortranACUFDataTransferPtrPtr(!llvm.ptr, !llvm.ptr, i64, i32, !llvm.ptr, i32) -> !llvm.struct<()> attributes {fir.runtime, sym_visibility = "private"}
+ llvm.func @_FortranACUFMemFree(!llvm.ptr, i32, !llvm.ptr, i32) -> !llvm.struct<()> attributes {fir.runtime, sym_visibility = "private"}
+ gpu.binary @cuda_device...
[truncated]
|
CUDA Fortran has a constructor that register the fatbinary and the kernel functions. To launch a kernel it does not need to relay on the MLIR runtime and the lowering of the gpu.launch_func is therefore different. This patch adds a conversion pattern to convert gpu.launch_func to the
CUFLaunchKernel
runtime function.