-
Notifications
You must be signed in to change notification settings - Fork 15k
[MLIR][XeGPU] Update XeGPU create_tdesc, update_offset, load, store and prefetch. #154653
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…or scatter ops with other xegpu pointer usage.
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Sang Ik Lee (silee2) ChangesThis PR tightens some loose ends in some XeGPU op definitions.
New test cases are added for the new enforced checks. Other minor implementation change: Full diff: https://github.com/llvm/llvm-project/pull/154653.diff 4 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index eb54d6887681d..8fd04a5d4cdcf 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -500,7 +500,8 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
(scattered) subviews, allowing each work-item in a subgroup specifying their own offset.
It accepts the following parameters:
- * source: a 1D memref or pointer (uint64_t) represents the flattened memory object.
+ * source: a 1D memref or pointer (i64, i32, ui64, ui32) represents the flattened
+ memory object.
* offsets: a vector containing offsets of each access point. Its size
is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
implying each element in the vector corresponds to a work-item (SIMT lane)
@@ -510,6 +511,8 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
match the dimension of offsets. It may also has a second dimension corresponding to
the chunk_size if the chunk size is larger than 1.
+ This op is not available in SIMT mode.
+
Example 1: It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
```mlir
%a = memref.alloc() : memref<1024xf32>
@@ -536,7 +539,7 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
```
}];
- let arguments = (ins XeGPU_BaseAddrType: $source,
+ let arguments = (ins XeGPU_GatherScatterBaseAddrType: $source,
XeGPU_OffsetType: $offsets);
let results = (outs XeGPU_TensorDesc:$TensorDesc);
@@ -617,6 +620,15 @@ def XeGPU_PrefetchOp : XeGPU_Op<"prefetch", []> {
: memref<1024xf32>, vector<4xindex>
```
+ Example 3 (SIMT mode):
+ SIMT mode only accepts the offsets variant.
+ ```mlir
+ xegpu.prefetch %0[%1] {l1_hint = #xegpu.cache_hint<cached>,
+ l2_hint = #xegpu.cache_hint<cached>,
+ l3_hint = #xegpu.cache_hint<cached>}
+ : memref<256xf32>, vector<1xindex>
+ ```
+
}];
let arguments = (ins XeGPU_GatherScatterSourceType: $source,
@@ -670,8 +682,19 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [MemoryEffects<[MemRead]>]> {
The mask operand masks out memory access so that it is safe to pass out-of-boundary
addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
- In SIMT mode, the result vector represents the data to be loaded by each work-item.
- Each work-item recieves a `chunk_size` number of elements.
+ In SIMT mode, the result is a 1D vector that represents the data to be loaded by
+ each work-item. If size is not 1, size should be equal to the chunk size,
+
+ `source` represents the memory region to be loaded from, which can be either a
+ tensor_desc or a 1D memref or pointer (ui64, ui32, i64 or i32).
+ In case of tensor_desc, offsets come from the producer create_tdesc op.
+ tensor_desc cannot be used in SIMT mode.
+ `offsets` represents offsets from source. required if `source` in not a TensorDescType.
+ offsets is a vector of `index` type and vector length is either the subgroup size
+ or 1 in SIMT mode.
+ `mask` is a vector of `i1` type, which is used to mask out the memory access.
+ mask is a vector of size equal to the subgroup size, or 1 in SIMT mode.
+ `chunk_size` (optional) represents contiguous number of elements to load from per work item.
Example 1:
```mlir
@@ -691,16 +714,7 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [MemoryEffects<[MemRead]>]> {
vector<16xi1> -> vector<16x8xf32>
```
- Example 3 (SIMT mode):
- ```mlir
- %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>,
- l2_hint = #xegpu.cache_hint<uncached>,
- l3_hint = #xegpu.cache_hint<uncached>}>
- : !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<memory_space=global, chunk_size=8>>
- vector<16xi1> -> vector<8xf32>
- ```
-
- Example 4:
+ Example 3:
A variant accepts memref as base pointer and an offset instead of scattered TensorTdesc.
It combines "create scattered TensorTdesc" and "load with scattered TensorTdesc".
The source operand could be a raw pointer (uint64_t). Please refer to create_tdesc
@@ -715,6 +729,16 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [MemoryEffects<[MemRead]>]> {
: memref<1024xf32>, vector<16xi1>, vector<16xindex> -> vector<16xf32>
```
+ Example 4 (SIMT mode):
+ SIMT mode only accepts the offsets variant. chunk_size can be inferred from result
+ type. In this example, chunk_size is 8.
+ ```mlir
+ %2 = xegpu.load %1[%2], %0 <{l1_hint = #xegpu.cache_hint<cached>,
+ l2_hint = #xegpu.cache_hint<uncached>,
+ l3_hint = #xegpu.cache_hint<uncached>}>
+ : memref<128xf32>, vector<1xindex>, vector<1xi1> -> vector<8xf32>
+ ```
+
}];
let arguments = (ins XeGPU_GatherScatterSourceType: $source,
@@ -784,8 +808,20 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [MemoryEffects<[MemWrite]>]> {
has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
introduced on purpose, making sure users are aware of this implicit transformation.
- In SIMT mode, the input vector represents the data to be stored by each work-item.
- Each work-item stores a `chunk_size` number of elements.
+ In SIMT mode, the result is a 1D vector that represents the data to be stored by
+ each work-item. If size is not 1, size should be equal to the chunk size.
+
+ `value` represents the data to be stored.
+ `dest` represents the memory region to be stored to, which can be either a
+ tensor_desc or a 1D memref or pointer (ui64, ui32, i64 or i32).
+ In case of tensor_desc, offsets come from the producer create_tdesc op.
+ tensor_desc cannot be used in SIMT mode.
+ `offsets` represents offsets from dest. required if `source` in not a TensorDescType.
+ offsets is a vector of `index` type and vector length is either the subgroup size
+ or 1 in SIMT mode.
+ `mask` is a vector of `i1` type, which is used to mask out the memory access.
+ mask is a vector of size equal to the subgroup size, or 1 in SIMT mode.
+ `chunk_size` (optional) represents contiguous number of elements to store to per work item.
Example 1:
```mlir
@@ -803,15 +839,7 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [MemoryEffects<[MemWrite]>]> {
: vector<16x8xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scattered_tdesc_attr<chunk_size=8>>, vector<16xi1>
```
- Example 3 (SIMT mode):
- ```mlir
- xegpu.store %0, %1, %2 <{l1_hint = #xegpu.cache_hint<uncached>,
- l2_hint = #xegpu.cache_hint<write_back>,
- l3_hint = #xegpu.cache_hint<write_through>}>
- : vector<8xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scattered_tdesc_attr<chunk_size=8>> vector<16xi1>
- ```
-
- Example 4:
+ Example 3:
A variant accepts memref as base pointer and an offset instead of scattered TensorTdesc.
It combines "create scattered TensorTdesc" and "store with scattered TensorTdesc".
The dest operand could be a raw pointer (uint64_t).
@@ -827,6 +855,16 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [MemoryEffects<[MemWrite]>]> {
: memref<1024xf32>, vector<16xi1>, vector<16xindex> -> vector<16xf32>
```
+ Example 4 (SIMT mode):
+ SIMT mode only accepts the offsets variant. chunk_size can be inferred from value
+ type. In this example, chunk_size is 8.
+ ```mlir
+ xegpu.store %0, %1[%2], %3 <{l1_hint = #xegpu.cache_hint<uncached>,
+ l2_hint = #xegpu.cache_hint<write_back>,
+ l3_hint = #xegpu.cache_hint<write_through>}>
+ : vector<8xf32>, memref<256xf32>, vector<1xindex>, vector<1xi1>
+ ```
+
}];
let arguments = (ins
@@ -895,6 +933,8 @@ def XeGPU_UpdateOffsetOp: XeGPU_Op<"update_offset",
update the offset per work-item, so its offsets contains values representing
shifts for each work-item.
+ This op is not available in SIMT mode.
+
Example:
```mlir
%off = arith.constant dense<[32, 32, 32, 32]> : vector<4xindex>
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index f8b371db498e8..53ecedab5406d 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -16,13 +16,15 @@ include "mlir/IR/BuiltinTypes.td"
def XeGPU_IntType: AnyTypeOf<[I1, I8, I16, I32, I64, SI1, SI8, SI16, SI32, SI64, UI1, UI8, UI16, UI32, UI64]>;
def XeGPU_FloatType: AnyTypeOf<[F16, F32, F64, BF16, TF32]>;
def XeGPU_ScalarType: AnyTypeOf<[XeGPU_IntType, XeGPU_FloatType]>;
-def XeGPU_BaseAddrType: AnyTypeOf<[Non0RankedMemRefOf<[XeGPU_ScalarType]>, UI64, UI32, I64, I32]>;
+def XeGPU_PointerType: AnyTypeOf<[UI64, UI32, I64, I32]>;
+def XeGPU_BaseAddrType: AnyTypeOf<[Non0RankedMemRefOf<[XeGPU_ScalarType]>, XeGPU_PointerType]>;
def XeGPU_DpasOprType: FixedVectorOfRankAndType<[1, 2, 3], [XeGPU_ScalarType]>;
def XeGPU_DpasResType: FixedVectorOfRankAndType<[1, 2], [XeGPU_ScalarType]>;
def XeGPU_OffsetType: FixedVectorOfNonZeroRankOf<[Index]>;
def XeGPU_MaskType: FixedVectorOfNonZeroRankOf<[I1]>;
def XeGPU_ValueType: FixedVectorOfNonZeroRankOf<[XeGPU_ScalarType]>;
def XeGPU_VectorType: VectorOfRankAndType<[1,2,3,4,5,6], [XeGPU_ScalarType]>;
+def XeGPU_GatherScatterBaseAddrType: AnyTypeOf<[MemRefRankOf<[XeGPU_ScalarType], [1]>, XeGPU_PointerType]>;
// common base class for types in XeGPU dialect
class XeGPUTypeDef<string name, string typeMnemonic, list<Trait> traits = [],
@@ -189,7 +191,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
let genVerifyDecl = 1;
}
-def XeGPU_GatherScatterSourceType : AnyTypeOf<[XeGPU_TensorDesc,Non0RankedMemRefOf<[XeGPU_ScalarType]>, UI64]>;
+def XeGPU_GatherScatterSourceType : AnyTypeOf<[XeGPU_TensorDesc,XeGPU_GatherScatterBaseAddrType]>;
def XeGPU_Nbarrier: XeGPUTypeDef<"Nbarrier", "nbarrier", [], "mlir::Type"> {
let summary = "!xegpu.nbarrier a custom XeGPU type representing a barrier.";
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 906c71d8b8dad..cf5da7a416846 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -58,13 +58,6 @@ static SmallVector<int64_t> getShapeOf(Type type) {
return shape;
}
-static int64_t getRankOf(Value val) {
- auto type = val.getType();
- if (auto ty = llvm::dyn_cast<ShapedType>(type))
- return ty.getRank();
- return 0;
-}
-
static bool isReadHintOrNone(const CachePolicyAttr &attr) {
if (!attr)
return true;
@@ -685,10 +678,6 @@ void CreateDescOp::build(OpBuilder &builder, OperationState &state,
LogicalResult CreateDescOp::verify() {
auto tdescTy = getTensorDescType();
- if (getRankOf(getSource()) > 1)
- return emitOpError(
- "Expecting the source is a 1D memref or pointer (uint64_t).");
-
if (!tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
@@ -723,13 +712,15 @@ LogicalResult CreateDescOp::verify() {
LogicalResult PrefetchOp::verify() {
auto tdescTy = getTensorDescType();
+ if (!tdescTy && !getOffsets())
+ return emitOpError("Expects offsets.");
+
+ if (tdescTy && getOffsets())
+ return emitOpError("offsets not allowed.");
+
if (tdescTy && !tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.");
- if (!tdescTy && getRankOf(getSource()) > 1)
- return emitOpError(
- "Expecting the source is a 1D memref or pointer (uint64_t).");
-
if (!isReadHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
@@ -757,13 +748,15 @@ LogicalResult LoadGatherOp::verify() {
auto maskTy = getMaskType();
auto valueTy = getValueType();
+ if (!tdescTy && !getOffsets())
+ return emitOpError("Expects offsets.");
+
+ if (tdescTy && getOffsets())
+ return emitOpError("offsets not allowed.");
+
if (tdescTy && !tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.");
- if (!tdescTy && getRankOf(getSource()) > 1)
- return emitOpError(
- "Expecting the source is a 1D memref or pointer (uint64_t).");
-
if (!isReadHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
@@ -804,13 +797,15 @@ LogicalResult StoreScatterOp::verify() {
auto maskTy = getMaskType();
auto valueTy = getValueType();
+ if (!tdescTy && !getOffsets())
+ return emitOpError("Expects offsets.");
+
+ if (tdescTy && getOffsets())
+ return emitOpError("offsets not allowed.");
+
if (tdescTy && !tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.");
- if (!tdescTy && getRankOf(getDest()) > 1)
- return emitOpError(
- "Expecting the dest is a 1D memref or pointer (uint64_t).");
-
if (!isWriteHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
diff --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir
index 93a5a055b08c6..c076ac78b9edd 100644
--- a/mlir/test/Dialect/XeGPU/invalid.mlir
+++ b/mlir/test/Dialect/XeGPU/invalid.mlir
@@ -387,11 +387,28 @@ func.func @load_gather_vc_3(%src: ui64) {
// -----
func.func @prefetch_offset_wi_1(%src: memref<4x4xf32>) {
%offsets = arith.constant dense<[0]> : vector<1xindex>
- // expected-error@+1 {{Expecting the source is a 1D memref or pointer}}
+ // expected-error@+1 {{op operand #0 must be TensorDesc describing regions of interested data}}
xegpu.prefetch %src[%offsets]: memref<4x4xf32>, vector<1xindex>
return
}
+// -----
+func.func @prefetch_offset_wi_2(%src: memref<16xf32>) {
+ %offsets = arith.constant dense<[0]> : vector<1xindex>
+ %1 = xegpu.create_tdesc %src, %offsets : memref<16xf32>, vector<1xindex>
+ -> !xegpu.tensor_desc<1x3xf32, #xegpu.scatter_tdesc_attr<chunk_size = 3>>
+ // expected-error@+1 {{offsets not allowed}}
+ xegpu.prefetch %1[%offsets]: !xegpu.tensor_desc<1x3xf32, #xegpu.scatter_tdesc_attr<chunk_size = 3>>, vector<1xindex>
+ return
+}
+
+// -----
+func.func @prefetch_offset_wi_3(%src: memref<16xf32>) {
+ // expected-error@+1 {{Expects offsets}}
+ xegpu.prefetch %src: memref<16xf32>
+ return
+}
+
// -----
func.func @load_gather_offset_sg(%src: memref<?xf16>) {
%offsets = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
@@ -428,12 +445,50 @@ func.func @store_scatter_offset_wi_2(%src: memref<4x4xf16>) {
%val = arith.constant dense<2.9>: vector<4xf16>
%offsets = arith.constant dense<[0]> : vector<1xindex>
%mask = arith.constant dense<1>: vector<1xi1>
- // expected-error@+1 {{Expecting the dest is a 1D memref or pointer}}
+ // expected-error@+1 {{op operand #1 must be TensorDesc describing regions of interested data}}
xegpu.store %val, %src[%offsets], %mask
: vector<4xf16>, memref<4x4xf16>, vector<1xindex>, vector<1xi1>
return
}
+// -----
+func.func @store_scatter_offset_wi_3(%src: memref<16xf16>) {
+ %val = arith.constant dense<2.9>: vector<1xf16>
+ %mask = arith.constant dense<1>: vector<1xi1>
+ // expected-error@+1 {{Expects offsets}}
+ xegpu.store %val, %src, %mask
+ : vector<1xf16>, memref<16xf16>, vector<1xi1>
+ return
+}
+
+// -----
+func.func @store_scatter_offset_wi_4(%src: !xegpu.tensor_desc<1x1xf32, #xegpu.scatter_tdesc_attr<>>) {
+ %val = arith.constant dense<2.9>: vector<1xf16>
+ %offsets = arith.constant dense<[0]> : vector<1xindex>
+ %mask = arith.constant dense<1>: vector<1xi1>
+ // expected-error@+1 {{offsets not allowed}}
+ xegpu.store %val, %src[%offsets], %mask
+ : vector<1xf16>, !xegpu.tensor_desc<1x1xf32, #xegpu.scatter_tdesc_attr<>>, vector<1xindex>, vector<1xi1>
+ return
+}
+
+// -----
+func.func @load_gather_offset_wi_4(%src: !xegpu.tensor_desc<1x2xf16, #xegpu.scatter_tdesc_attr<>>) {
+ %mask = arith.constant dense<1>: vector<1xi1>
+ %offsets = arith.constant dense<[0]> : vector<1xindex>
+ // expected-error@+1 {{offsets not allowed}}
+ %2 = xegpu.load %src[%offsets], %mask <{chunk_size = 2}> : !xegpu.tensor_desc<1x2xf16, #xegpu.scatter_tdesc_attr<>>, vector<1xindex>, vector<1xi1> -> vector<2xf16>
+ return
+}
+
+// -----
+func.func @load_gather_offset_wi_3(%src: ui64) {
+ %mask = arith.constant dense<1>: vector<1xi1>
+ // expected-error@+1 {{Expects offsets}}
+ %2 = xegpu.load %src, %mask <{chunk_size = 2}> : ui64, vector<1xi1> -> vector<2xf16>
+ return
+}
+
// -----
func.func @load_gather_offset_wi_2(%src: ui64) {
%mask = arith.constant dense<1>: vector<1xi1>
@@ -447,7 +502,7 @@ func.func @load_gather_offset_wi_2(%src: ui64) {
func.func @load_gather_offset_wi_1(%src: memref<4x4xf32>) {
%mask = arith.constant dense<1>: vector<1xi1>
%offsets = arith.constant dense<[0]> : vector<1xindex>
- // expected-error@+1 {{Expecting the source is a 1D memref or pointer}}
+ // expected-error@+1 {{op operand #0 must be TensorDesc describing regions of interested data}}
%2 = xegpu.load %src[%offsets], %mask <{chunk_size = 2}> : memref<4x4xf32>, vector<1xindex>, vector<1xi1> -> vector<2xf32>
return
}
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Great cleanup 👍
One design question
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, makes #154556 less confusing
``` | ||
|
||
Example 4: | ||
Example 3: | ||
A variant accepts memref as base pointer and an offset instead of scattered TensorTdesc. | ||
It combines "create scattered TensorTdesc" and "load with scattered TensorTdesc". | ||
The source operand could be a raw pointer (uint64_t). Please refer to create_tdesc |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The source operand could be a raw pointer (uint64_t). Please refer to create_tdesc | |
The source operand could be a raw pointer (ui64, ui32, i64 or i32). Please refer to create_tdesc |
``` | ||
|
||
Example 4: | ||
Example 3: | ||
A variant accepts memref as base pointer and an offset instead of scattered TensorTdesc. | ||
It combines "create scattered TensorTdesc" and "store with scattered TensorTdesc". | ||
The dest operand could be a raw pointer (uint64_t). |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The dest operand could be a raw pointer (uint64_t). | |
The dest operand could be a raw pointer (ui64, ui32, i64 or i32). |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank! Missed that one.
Btw, what is the reason to demand vector offsets in the op definition? For SIMT distribution, given a vector of SIMD offsets, we would need to extract an element from 1D vector at lane idx, to my understanding.
Why do we need to make extra steps for wrapping |
I tried not to change op definition as much as possible but agree with you on this one. |
…for load/store/prefetch op in SIMT mode.
Another possible inconsistency for SIMT code in the current upstream. Loadgather can have a memref source, in this case, the chunk size needs to be part of the op. In verification, when we check the mask shape against the chunk from the op (not from tdesc), we have: llvm::SmallVector<int64_t> expectedMaskShape(valueShape);
if (chunkSize > 1)
expectedMaskShape.pop_back();
if (expectedMaskShape != maskShape)
return emitError() << "Mask should match value except the chunk size dim.";
For SIMT (i.e., 1D valueShape) code with non-1 chunk size, this means that we always hit Example IR: gpu.func @scatter_ops(%arg0: memref<256xf16>, %arg1: vector<16xindex>) {
%cst = arith.constant dense<true> : vector<1xi1>
%0 = gpu.lane_id
%1 = vector.extract %arg1[%0] : index from vector<16xindex>
%2 = vector.broadcast %1 : index to vector<1xindex>
%3 = xegpu.load %arg0[%2], %cst <{chunk_size = 8 : i64}> : memref<256xf16>, vector<1xindex>, vector<1xi1> -> vector<8xf16>
xegpu.store %3, %arg0[%2], %cst <{chunk_size = 8 : i64}> : vector<8xf16>, memref<256xf16>, vector<1xindex>, vector<1xi1>
gpu.return
} Could you please add this example as a test (maybe a simplified version of it) to see whether this PR addresses the SIMT verification inconsistency? |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM.
But I am not sure about the need for scalar offsets. Maybe you can clarify that a bit.
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint, | ||
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint); | ||
let arguments = (ins XeGPU_GatherScatterSourceType:$source, | ||
Optional<AnyTypeOf<[XeGPU_OffsetType, Index]>>:$offsets, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
why not move Index to XeGPU_OffsetType?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Scalar offset is provided for simplifying layout distribution to SIMT.
But single element vector of offset is also valid.
Scalar is an exception.
I think keeping XeGPU_OffsetType as vector type and explicitly spelling out scalar Index type fits that idea better and helps code readability.
Also, maybe XeGPU may introduce other ops in the future that only need vector offsets and not scalar offsets.
Such usage case would require scalar and vector to be separated.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Will supporting both vector<1xindex>
and index
incur more if-else check in patterns or it can be handled in one place, so patterns don't need to care about this?
tensor_desc cannot be used in SIMT mode. | ||
- `offsets`: represents offsets from source. required if `source` in not a TensorDescType. | ||
offsets is a vector of `index` type and vector length is either the subgroup size | ||
or 1 in SIMT mode. scalar offset is also valid for SIMT mode. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
why is the scalar offset case needed? I would imagine the offsets will always be a vector if coming from SG/WG level. So I don't think this is required (but nice to have if it does not complicate our logic too much).
I think a vector<1xindex> would also do the exact same thing (DCE, canonicalize kick in) with much less maintainence effort on our side.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Keeping single element vector and relying on clean up passes to remove vector.extract
and vector.insert
would also work.
But keeping and maintaining scalar offsets and mask is not too much of a burden.
Only extra burden is op validation.
XeGPU to XeVM conversion will materialize single element vector to scalar. In case of scalar, materialization just isn't needed. Conversion logic is identical.
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint); | ||
let arguments = (ins XeGPU_GatherScatterSourceType:$source, | ||
Optional<AnyTypeOf<[XeGPU_OffsetType, Index]>>:$offsets, | ||
AnyTypeOf<[XeGPU_MaskType, I1]>:$mask, OptionalAttr<I64Attr>:$chunk_size, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
same comment as above, consider moving I1 inside MarkTy?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think keeping it separate is better for now. Same reason as stated above for offsets.
Updated validation logic for SIMT mode and added valid SIMT mode op tests. |
Scalar offsets and masks are provided for ease of use. |
@@ -595,6 +604,16 @@ def XeGPU_PrefetchOp : XeGPU_Op<"prefetch", []> { | |||
As compared to prefetch_nd, which works on non-scattered TensorDesc, | |||
it works on scattered TensorDesc instead. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: could you help to update the doc here? It seems the definition has switched to use memref/pointer instead of TensorDesc. I didn't see XeGPU_GatherScatterSourceType contains TensorDesc, or maybe I miss it. But anyway, we are retiring the support for scattered TensorDesc
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
XeGPU_GatherScatterSourceType
does contain XeGPU_TensorDesc
Check here:
https://github.com/silee2/llvm-project/blob/updateScatterDesc/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td#L196-#L197
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Ah, my bad. just realized that XeGPU_GatherScatterSourceType
is different from XeGPU_GatherScatterBaseSourceType
Optional<AnyTypeOf<[XeGPU_OffsetType, Index]>>:$offsets, | ||
OptionalAttr<XeGPU_CacheHintAttr>:$l1_hint, | ||
OptionalAttr<XeGPU_CacheHintAttr>:$l2_hint, | ||
OptionalAttr<XeGPU_CacheHintAttr>:$l3_hint); | ||
|
||
let extraClassDeclaration = extraBaseClassDeclaration # [{ | ||
Type getSourceType() { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could you help to get rid of getTensorDesc() and getTensorDescType() methods if XeGPU_GatherScatterSourceType doesn't support TensorDesc.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As mentioned above, XeGPU_GatherScatterSourceType
includes XeGPU_TensorType
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint, | ||
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint); | ||
let arguments = (ins XeGPU_GatherScatterSourceType:$source, | ||
Optional<AnyTypeOf<[XeGPU_OffsetType, Index]>>:$offsets, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Will supporting both vector<1xindex>
and index
incur more if-else check in patterns or it can be handled in one place, so patterns don't need to care about this?
tensor_desc or a 1D memref or pointer (ui64, ui32, i64 or i32). | ||
In case of tensor_desc, offsets come from the producer create_tdesc op. | ||
tensor_desc cannot be used in SIMT mode. | ||
- `offsets`: represents offsets from source. required if `source` in not a TensorDescType. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
- `offsets`: represents offsets from source. required if `source` in not a TensorDescType. | |
- `offsets`: represents offsets from source. required if `source` in not a TensorDesc. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
vector<1xindex> can auto convert to index by materialization cast.
So lowering pattern will always see scalar index
@@ -89,13 +82,18 @@ isValidGatherScatterParams(Type maskTy, VectorType valueTy, | |||
if (!tdescTy.isScattered()) | |||
return emitError() << "Expects a scattered TensorDesc."; | |||
|
|||
if (!valueTy) | |||
return emitError() << "Expecting a vector type result."; | |||
auto chunkSize = tdescTy.getChunkSizeAsInt(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Since support for scattered TensorDesc is removed, is this method still needed?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Support is not removed.
if (!valueTy) { | ||
if (chunkSize > 1) | ||
return emitError() << "Expecting chunk size == 1 for scalar result"; | ||
if (maskVecTy || offsetsVecTy) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: maybe using llvm::all_of
to check all of mask, value, and offsets are VectorType or ScalarType help to increase the code readability.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
all of mask and offset are Vector or Scalar type
But value depends on chunk size.
I'm not too familiar with using llvm::all_of
and available predicate lambda to use with it.
PR is getting a bit big so will optimize in a follow up PR.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
if (maskSize == 1) | ||
return success(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: it might be less error-prone to perform remaining checks when maskSize
is non-unit instead of an early exist.
As in:
if (maskSize != 1) {
// perform checks
}
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actually, code below that line is for maskSize != 1
Instead of If-then-else
,
I'm doing If with early exit
and fallthrough is the else clause.
This PR adds distribution patterns for scattered load and store ops, chunk size included. XeGPU moves toward offsets being part of the load/store ops, so the pass only supports this case. Manipulating a vector of offsets indirectly through create_tdesc is complex and soon to become obsolete anyway. This PR assumes the SIMT-adapted scatter ops verification introduced in #154653. The distribution itself can be reviewed in the meantime.
This PR adds distribution patterns for scattered load and store ops, chunk size included. XeGPU moves toward offsets being part of the load/store ops, so the pass only supports this case. Manipulating a vector of offsets indirectly through create_tdesc is complex and soon to become obsolete anyway. This PR assumes the SIMT-adapted scatter ops verification introduced in llvm/llvm-project#154653. The distribution itself can be reviewed in the meantime.
This PR tightens some loose ends in some XeGPU op definitions.
Changes are backward compatible except for
New test cases are added for the new enforced checks.
Other minor implementation change:
XeGPU scatter tensor descriptor only allows 1D base memref. This was check in op verify() method. Now moved to tablegen - ODS - definition.