Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LV] Cache call vectorization decisions #66521

Merged
merged 2 commits into from
Oct 9, 2023

Conversation

huntergr-arm
Copy link
Collaborator

LoopVectorize currently queries VFDatabase repeatedly for each CI,
and each query to VFDatabase rescans all vector variants.

This patch instead makes a decision for each call once per VF based
on the cost of scalarization vs. function call to a vector variant
of the function vs. a vector intrinsic, then caches the decision
along with relevant info for use in planning and plan execution.

LoopVectorize currently queries VFDatabase repeatedly for each CI,
and each query to VFDatabase rescans all vector variants.

This patch instead makes a decision for each call once per VF based
on the cost of scalarization vs. function call to a vector variant
of the function vs. a vector intrinsic, then caches the decision
along with relevant info for use in planning and plan execution.
@llvmbot
Copy link
Member

llvmbot commented Sep 15, 2023

@llvm/pr-subscribers-llvm-transforms

@llvm/pr-subscribers-vectorizers

Changes

LoopVectorize currently queries VFDatabase repeatedly for each CI,
and each query to VFDatabase rescans all vector variants.

This patch instead makes a decision for each call once per VF based
on the cost of scalarization vs. function call to a vector variant
of the function vs. a vector intrinsic, then caches the decision
along with relevant info for use in planning and plan execution.


Patch is 21.14 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/66521.diff

1 Files Affected:

  • (modified) llvm/lib/Transforms/Vectorize/LoopVectorize.cpp (+211-119)
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index a203c4794eac943..7e81707b8b15750 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1245,6 +1245,13 @@ class LoopVectorizationCostModel {
   /// avoid redundant calculations.
   void setCostBasedWideningDecision(ElementCount VF);
 
+  /// A call may be vectorized in different ways depending on whether we have
+  /// vectorized variants available and whether the target supports masking.
+  /// This function analyzes all calls in the function at the supplied VF,
+  /// makes a decision based on the costs of available options, and stores that
+  /// decision in a map for use in planning and plan execution.
+  void setVectorizedCallDecision(ElementCount VF);
+
   /// A struct that represents some properties of the register usage
   /// of a loop.
   struct RegisterUsage {
@@ -1356,7 +1363,9 @@ class LoopVectorizationCostModel {
     CM_Widen_Reverse, // For consecutive accesses with stride -1.
     CM_Interleave,
     CM_GatherScatter,
-    CM_Scalarize
+    CM_Scalarize,
+    CM_VectorCall,
+    CM_IntrinsicCall
   };
 
   /// Save vectorization decision \p W and \p Cost taken by the cost model for
@@ -1412,6 +1421,29 @@ class LoopVectorizationCostModel {
     return WideningDecisions[InstOnVF].second;
   }
 
+  struct CallWideningDecision {
+    InstWidening Kind;
+    Function *Variant;
+    Intrinsic::ID IID;
+    std::optional<unsigned> MaskPos;
+    InstructionCost Cost;
+  };
+
+  void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind,
+                               Function *Variant, Intrinsic::ID IID,
+                               std::optional<unsigned> MaskPos,
+                               InstructionCost Cost) {
+    assert(!VF.isScalar() && "Expected vector VF");
+    CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
+                                                     MaskPos, Cost};
+  }
+
+  CallWideningDecision getCallWideningDecision(CallInst *CI,
+                                               ElementCount VF) const {
+    assert(!VF.isScalar() && "Expected vector VF");
+    return CallWideningDecisions.at(std::make_pair(CI, VF));
+  }
+
   /// Return True if instruction \p I is an optimizable truncate whose operand
   /// is an induction variable. Such a truncate will be removed by adding a new
   /// induction variable with the destination type.
@@ -1450,6 +1482,7 @@ class LoopVectorizationCostModel {
     if (VF.isScalar() || Uniforms.contains(VF))
       return;
     setCostBasedWideningDecision(VF);
+    setVectorizedCallDecision(VF);
     collectLoopUniforms(VF);
     collectLoopScalars(VF);
   }
@@ -1616,16 +1649,13 @@ class LoopVectorizationCostModel {
 
   /// Estimate cost of a call instruction CI if it were vectorized with factor
   /// VF. Return the cost of the instruction, including scalarization overhead
-  /// if it's needed. The flag NeedToScalarize shows if the call needs to be
-  /// scalarized -
-  /// i.e. either vector version isn't available, or is too expensive.
-  InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
-                                    Function **Variant,
-                                    bool *NeedsMask = nullptr) const;
+  /// if it's needed.
+  InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
 
   /// Invalidates decisions already taken by the cost model.
   void invalidateCostModelingDecisions() {
     WideningDecisions.clear();
+    CallWideningDecisions.clear();
     Uniforms.clear();
     Scalars.clear();
   }
@@ -1692,7 +1722,7 @@ class LoopVectorizationCostModel {
   /// part of that pattern.
   std::optional<InstructionCost>
   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
-                          TTI::TargetCostKind CostKind);
+                          TTI::TargetCostKind CostKind) const;
 
   /// Calculate vectorization cost of memory instruction \p I.
   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
@@ -1814,6 +1844,11 @@ class LoopVectorizationCostModel {
 
   DecisionList WideningDecisions;
 
+  using CallDecisionList =
+      DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
+
+  CallDecisionList CallWideningDecisions;
+
   /// Returns true if \p V is expected to be vectorized and it needs to be
   /// extracted.
   bool needsExtract(Value *V, ElementCount VF) const {
@@ -3278,76 +3313,33 @@ static void cse(BasicBlock *BB) {
   }
 }
 
-InstructionCost LoopVectorizationCostModel::getVectorCallCost(
-    CallInst *CI, ElementCount VF, Function **Variant, bool *NeedsMask) const {
-  Function *F = CI->getCalledFunction();
-  Type *ScalarRetTy = CI->getType();
-  SmallVector<Type *, 4> Tys, ScalarTys;
-  bool MaskRequired = Legal->isMaskRequired(CI);
-  for (auto &ArgOp : CI->args())
-    ScalarTys.push_back(ArgOp->getType());
+InstructionCost
+LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
+                                              ElementCount VF) const {
+  // We only need to calculate a cost if the VF is scalar; for actual vectors
+  // we should already have a pre-calculated cost at each VF.
+  if (!VF.isScalar())
+    return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
 
-  // Estimate cost of scalarized vector call. The source operands are assumed
-  // to be vectors, so we need to extract individual elements from there,
-  // execute VF scalar calls, and then gather the result into the vector return
-  // value.
   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
-  InstructionCost ScalarCallCost =
-      TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind);
-  if (VF.isScalar())
-    return ScalarCallCost;
-
-  // Compute corresponding vector type for return value and arguments.
-  Type *RetTy = ToVectorTy(ScalarRetTy, VF);
-  for (Type *ScalarTy : ScalarTys)
-    Tys.push_back(ToVectorTy(ScalarTy, VF));
-
-  // Compute costs of unpacking argument values for the scalar calls and
-  // packing the return values to a vector.
-  InstructionCost ScalarizationCost =
-      getScalarizationOverhead(CI, VF, CostKind);
+  Type *RetTy = CI->getType();
+  if (RecurrenceDescriptor::isFMulAddIntrinsic(CI))
+    if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind))
+      return *RedCost;
 
-  InstructionCost Cost =
-      ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
-
-  // If we can't emit a vector call for this function, then the currently found
-  // cost is the cost we need to return.
-  InstructionCost MaskCost = 0;
-  VFShape Shape = VFShape::get(*CI, VF, MaskRequired);
-  if (NeedsMask)
-    *NeedsMask = MaskRequired;
-  Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
-  // If we want an unmasked vector function but can't find one matching the VF,
-  // maybe we can find vector function that does use a mask and synthesize
-  // an all-true mask.
-  if (!VecFunc && !MaskRequired) {
-    Shape = VFShape::get(*CI, VF, /*HasGlobalPred=*/true);
-    VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
-    // If we found one, add in the cost of creating a mask
-    if (VecFunc) {
-      if (NeedsMask)
-        *NeedsMask = true;
-      MaskCost = TTI.getShuffleCost(
-          TargetTransformInfo::SK_Broadcast,
-          VectorType::get(
-              IntegerType::getInt1Ty(VecFunc->getFunctionType()->getContext()),
-              VF));
-    }
-  }
+  SmallVector<Type *, 4> Tys;
+  for (auto &ArgOp : CI->args())
+    Tys.push_back(ArgOp->getType());
 
-  // We don't support masked function calls yet, but we can scalarize a
-  // masked call with branches (unless VF is scalable).
-  if (!TLI || CI->isNoBuiltin() || !VecFunc)
-    return VF.isScalable() ? InstructionCost::getInvalid() : Cost;
+  InstructionCost ScalarCallCost =
+      TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
 
-  // If the corresponding vector cost is cheaper, return its cost.
-  InstructionCost VectorCallCost =
-      TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost;
-  if (VectorCallCost < Cost) {
-    *Variant = VecFunc;
-    Cost = VectorCallCost;
+  // If this is an intrinsic we may have a lower cost for it.
+  if (getVectorIntrinsicIDForCall(CI, TLI)) {
+    InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
+    return std::min(ScalarCallCost, IntrinsicCost);
   }
-  return Cost;
+  return ScalarCallCost;
 }
 
 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
@@ -4279,7 +4271,10 @@ bool LoopVectorizationCostModel::isScalarWithPredication(
   default:
     return true;
   case Instruction::Call:
-    return !VFDatabase::hasMaskedVariant(*(cast<CallInst>(I)), VF);
+    if (VF.isScalar())
+      return true;
+    return CallWideningDecisions.at(std::make_pair(cast<CallInst>(I), VF))
+               .Kind == CM_Scalarize;
   case Instruction::Load:
   case Instruction::Store: {
     auto *Ptr = getLoadStorePointerOperand(I);
@@ -5992,6 +5987,8 @@ LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
     if (ValuesToIgnore.count(I))
       continue;
 
+    collectInLoopReductions();
+
     // For each VF find the maximum usage of registers.
     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
       // Count the number of registers used, per register class, given all open
@@ -6511,7 +6508,8 @@ LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
 
 std::optional<InstructionCost>
 LoopVectorizationCostModel::getReductionPatternCost(
-    Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
+    Instruction *I, ElementCount VF, Type *Ty,
+    TTI::TargetCostKind CostKind) const {
   using namespace llvm::PatternMatch;
   // Early exit for no inloop reductions
   if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
@@ -6549,10 +6547,10 @@ LoopVectorizationCostModel::getReductionPatternCost(
 
   // Find the reduction this chain is a part of and calculate the basic cost of
   // the reduction on its own.
-  Instruction *LastChain = InLoopReductionImmediateChains[RetI];
+  Instruction *LastChain = InLoopReductionImmediateChains.at(RetI);
   Instruction *ReductionPhi = LastChain;
   while (!isa<PHINode>(ReductionPhi))
-    ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
+    ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
 
   const RecurrenceDescriptor &RdxDesc =
       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
@@ -6970,6 +6968,122 @@ void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
   }
 }
 
+void LoopVectorizationCostModel::setVectorizedCallDecision(ElementCount VF) {
+  if (VF.isScalar())
+    return;
+
+  for (BasicBlock *BB : TheLoop->blocks()) {
+    // For each instruction in the old loop.
+    for (Instruction &I : *BB) {
+      CallInst *CI = dyn_cast<CallInst>(&I);
+
+      if (!CI || CallWideningDecisions.contains(std::make_pair(CI, VF)))
+        continue;
+
+      InstructionCost ScalarCost = InstructionCost::getInvalid();
+      InstructionCost VectorCost = InstructionCost::getInvalid();
+      InstructionCost IntrinsicCost = InstructionCost::getInvalid();
+      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+
+      Function *ScalarFunc = CI->getCalledFunction();
+      Type *ScalarRetTy = CI->getType();
+      SmallVector<Type *, 4> Tys, ScalarTys;
+      bool MaskRequired = Legal->isMaskRequired(CI);
+      for (auto &ArgOp : CI->args())
+        ScalarTys.push_back(ArgOp->getType());
+
+      // Compute corresponding vector type for return value and arguments.
+      Type *RetTy = ToVectorTy(ScalarRetTy, VF);
+      for (Type *ScalarTy : ScalarTys)
+        Tys.push_back(ToVectorTy(ScalarTy, VF));
+
+      // An in-loop reduction using an fmuladd intrinsic is a special case;
+      // we don't want the normal cost for that intrinsic.
+      if (RecurrenceDescriptor::isFMulAddIntrinsic(CI))
+        if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind)) {
+          setCallWideningDecision(CI, VF, CM_IntrinsicCall, nullptr,
+                                  getVectorIntrinsicIDForCall(CI, TLI),
+                                  std::nullopt, *RedCost);
+          return;
+        }
+
+      // Estimate cost of scalarized vector call. The source operands are
+      // assumed to be vectors, so we need to extract individual elements from
+      // there, execute VF scalar calls, and then gather the result into the
+      // vector return value.
+      InstructionCost ScalarCallCost =
+          TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
+
+      // Compute costs of unpacking argument values for the scalar calls and
+      // packing the return values to a vector.
+      InstructionCost ScalarizationCost =
+          getScalarizationOverhead(CI, VF, CostKind);
+
+      ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
+
+      // Find the cost of vectorizing the call, if we can find a suitable
+      // vector variant of the function.
+      InstructionCost MaskCost = 0;
+      VFShape Shape = VFShape::get(*CI, VF, MaskRequired);
+      bool UsesMask = MaskRequired;
+      Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
+      // If we want an unmasked vector function but can't find one matching the
+      // VF, maybe we can find vector function that does use a mask and
+      // synthesize an all-true mask.
+      if (!VecFunc && !MaskRequired) {
+        Shape = VFShape::get(*CI, VF, /*HasGlobalPred=*/true);
+        VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
+        // If we found one, add in the cost of creating a mask
+        if (VecFunc) {
+          UsesMask = true;
+          MaskCost = TTI.getShuffleCost(
+              TargetTransformInfo::SK_Broadcast,
+              VectorType::get(IntegerType::getInt1Ty(
+                                  VecFunc->getFunctionType()->getContext()),
+                              VF));
+        }
+      }
+
+      std::optional<unsigned> MaskPos = std::nullopt;
+      if (VecFunc && UsesMask) {
+        for (const VFInfo &Info : VFDatabase::getMappings(*CI))
+          if (Info.Shape == Shape) {
+            assert(Info.isMasked() && "Vector function info shape mismatch");
+            MaskPos = Info.getParamIndexForOptionalMask().value();
+            break;
+          }
+
+        assert(MaskPos.has_value() && "Unable to find mask parameter index");
+      }
+
+      if (TLI && VecFunc && !CI->isNoBuiltin())
+        VectorCost =
+            TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost;
+
+      // Find the cost of an intrinsic; some targets may have instructions that
+      // perform the operation without needing an actual call.
+      Intrinsic::ID IID = getVectorIntrinsicIDForCall(CI, TLI);
+      if (IID != Intrinsic::not_intrinsic)
+        IntrinsicCost = getVectorIntrinsicCost(CI, VF);
+
+      InstructionCost Cost = ScalarCost;
+      InstWidening Decision = CM_Scalarize;
+
+      if (VectorCost <= Cost) {
+        Cost = VectorCost;
+        Decision = CM_VectorCall;
+      }
+
+      if (IntrinsicCost <= Cost) {
+        Cost = IntrinsicCost;
+        Decision = CM_IntrinsicCall;
+      }
+
+      setCallWideningDecision(CI, VF, Decision, VecFunc, IID, MaskPos, Cost);
+    }
+  }
+}
+
 InstructionCost
 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
                                                Type *&VectorTy) {
@@ -7227,6 +7341,9 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
         return TTI::CastContextHint::Reversed;
       case LoopVectorizationCostModel::CM_Unknown:
         llvm_unreachable("Instr did not go through cost modelling?");
+      case LoopVectorizationCostModel::CM_VectorCall:
+      case LoopVectorizationCostModel::CM_IntrinsicCall:
+        llvm_unreachable_internal("Instr has invalid widening decision");
       }
 
       llvm_unreachable("Unhandled case!");
@@ -7284,19 +7401,8 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
 
     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
   }
-  case Instruction::Call: {
-    if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
-      if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
-        return *RedCost;
-    Function *Variant;
-    CallInst *CI = cast<CallInst>(I);
-    InstructionCost CallCost = getVectorCallCost(CI, VF, &Variant);
-    if (getVectorIntrinsicIDForCall(CI, TLI)) {
-      InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
-      return std::min(CallCost, IntrinsicCost);
-    }
-    return CallCost;
-  }
+  case Instruction::Call:
+    return getVectorCallCost(cast<CallInst>(I), VF);
   case Instruction::ExtractValue:
     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
   case Instruction::Alloca:
@@ -7476,9 +7582,9 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
            "VF needs to be a power of two");
     // Collect the instructions (and their associated costs) that will be more
     // profitable to scalarize.
+    CM.collectInLoopReductions();
     if (CM.selectUserVectorizationFactor(UserVF)) {
       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
-      CM.collectInLoopReductions();
       buildVPlansWithVPRecipes(UserVF, UserVF);
       if (!hasPlanWithVF(UserVF)) {
         LLVM_DEBUG(dbgs() << "LV: No VPlan could be built for " << UserVF
@@ -7502,6 +7608,7 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
     VFCandidates.insert(VF);
 
+  CM.collectInLoopReductions();
   for (const auto &VF : VFCandidates) {
     // Collect Uniform and Scalar instructions after vectorization with VF.
     CM.collectUniformsAndScalars(VF);
@@ -7512,7 +7619,6 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
       CM.collectInstsToScalarize(VF);
   }
 
-  CM.collectInLoopReductions();
   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
 
@@ -8318,22 +8424,15 @@ VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
   bool ShouldUseVectorIntrinsic =
       ID && LoopVectorizationPlanner::getDecisionAndClampRange(
                 [&](ElementCount VF) -> bool {
-                  Function *Variant;
-                  // Is it beneficial to perform intrinsic call compared to lib
-                  // call?
-                  InstructionCost CallCost =
-                      CM.getVectorCallCost(CI, VF, &Variant);
-                  InstructionCost IntrinsicCost =
-                      CM.getVectorIntrinsicCost(CI, VF);
-                  return IntrinsicCost <= CallCost;
+                  return CM.getCallWideningDecision(CI, VF).Kind ==
+                         LoopVectorizationCostModel::CM_IntrinsicCall;
                 },
                 Range);
   if (ShouldUseVectorIntrinsic)
     return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID);
 
   Function *Variant = nullptr;
-  ElementCount VariantVF;
-  bool NeedsMask = false;
+  std::optional<unsigned> MaskPos;
   // Is better to call a vectorized version of the function than to to scalarize
   // the call?
   auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
@@ -8352,16 +8451,19 @@ VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
         // finds a valid variant.
         if (Variant)
           return false;
-        CM.getVectorCallCost(CI, VF, &Variant, &NeedsMask);
-        // If we found a valid vector variant at this VF, then store the VF
-        // in case we need to generate a mask.
-        if (Variant)
-          VariantVF = VF;
-        return Variant != nullptr;
+        LoopVectorizationCostModel::CallWideningDecision Decision =
+            CM.getCallWideningDecision(CI, VF);
+        if (Decision.Kind == LoopVectorizationCostModel::CM_VectorCall) {
+          Variant = Decision.Variant;
+          MaskPos = Decision.MaskPos;
+ ...
[truncated]

@huntergr-arm
Copy link
Collaborator Author

Moved this to github to get used to the new workflow.
I believe I've taken care of David's requests for the code, let me know if I missed something.

The changes to using .at() instead of operator[] were because I was performing lookups in a const function, and operator[] is not const (it can create new entries). .at() will assert if the entry does not exist.

I would have split off the other part involving the unit test change, but it appears that the cost was printed out twice and another commit has already updated the test so it no longer fails with my changes.

Also documents the extra work done in collectUniformsAndScalars with
this patch, and the code is now stricter about VFs (should never
be called with a scalar VF).
Copy link
Contributor

@david-arm david-arm left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM! Thanks for making all the changes @huntergr-arm.

@huntergr-arm huntergr-arm merged commit 3273ea4 into llvm:main Oct 9, 2023
@huntergr-arm huntergr-arm deleted the vecfunc-cache branch October 9, 2023 10:23
huntergr-arm added a commit to huntergr-arm/llvm-project that referenced this pull request Oct 9, 2023
As requested in llvm#66521

I confirmed a crash with "return" instead of "continue" in
setVectorizedCallDecision's fmuladd reduction recognition.
huntergr-arm added a commit that referenced this pull request Oct 20, 2023
As requested in (#66521)

I confirmed a crash with "return" instead of "continue" in
setVectorizedCallDecision's fmuladd reduction recognition.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants