Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir] Fix lower_unpack when dynamic dimensions are involved #68423

Merged
merged 1 commit into from
Oct 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -467,7 +467,7 @@ FailureOr<LowerUnPackOpResult> linalg::lowerUnPack(RewriterBase &rewriter,
auto extractSliceOp = rewriter.create<tensor::ExtractSliceOp>(
loc, destTensorType, reshapeOp->getResult(0),
SmallVector<OpFoldResult>(destRank, zero),
tensor::getMixedSizes(rewriter, loc, unPackOp->getResult(0)),
tensor::getMixedSizes(rewriter, loc, unPackOp.getDest()),
SmallVector<OpFoldResult>(destRank, one));

// 7. Inject a copy to preserve DPS.
Expand Down
39 changes: 38 additions & 1 deletion mlir/test/Dialect/Linalg/transform-lower-pack.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ func.func @unpack(%arg0: tensor<17x2x16x16x32x8xf32>, %arg1: tensor<129x47x16x16
// CHECK-SAME: : tensor<17x8x2x32x16x16xf32> into tensor<136x64x16x16xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0, 0] [129, 47, 16, 16] [1, 1, 1, 1]
// CHECK-SAME: : tensor<136x64x16x16xf32> to tensor<129x47x16x16xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<129x47x16x16xf32>)
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<129x47x16x16xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<129x47x16x16xf32>)
%pack = tensor.unpack %arg0 inner_dims_pos = [1, 0] inner_tiles = [32, 8] into %arg1
: tensor<17x2x16x16x32x8xf32> -> tensor<129x47x16x16xf32>
Expand Down Expand Up @@ -397,3 +397,40 @@ transform.sequence failures(propagate) {
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)
}

// -----

// Check that we can lower unpack with dynamic dimensions in the destination.
// CHECK-LABEL: func.func @unpack_with_dynamic_dest(
// CHECK-SAME: %[[ARG0:.*]]: tensor<32x2x49x16x16xf32>, %[[ARG1:.*]]: tensor<32x?x?xf32>)
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<32x2x16x49x16xf32>
// CHECK: %[[TRAN:.*]] = linalg.transpose
// CHECK-SAME: ins(%[[ARG0]] : tensor<32x2x49x16x16xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<32x2x16x49x16xf32>)
// CHECK-SAME: permutation = [0, 1, 3, 2, 4]
// CHECK: %[[CLP:.*]] = tensor.collapse_shape %[[TRAN]] {{\[}}[0], [1, 2], [3, 4]]
// CHECK-SAME: : tensor<32x2x16x49x16xf32> into tensor<32x32x784xf32>
// CHECK: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[DIM1:.*]] = tensor.dim %[[ARG1]], %[[C1]] : tensor<32x?x?xf32>
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[DIM2:.*]] = tensor.dim %[[ARG1]], %[[C2]] : tensor<32x?x?xf32>
// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[CLP]][0, 0, 0] [32, %[[DIM1]], %[[DIM2]]] [1, 1, 1]
// CHECK-SAME: : tensor<32x32x784xf32> to tensor<32x?x?xf32>
// CHECK: linalg.copy ins(%[[SLICE]] : tensor<32x?x?xf32>)
// CHECK-SAME: outs(%[[ARG1]] : tensor<32x?x?xf32>)
func.func @unpack_with_dynamic_dest(%arg0: tensor<32x2x49x16x16xf32>, %arg1: tensor<32x?x?xf32>) -> tensor<32x?x?xf32> {
%pack = tensor.unpack %arg0 inner_dims_pos = [1, 2] inner_tiles = [16, 16] into %arg1
: tensor<32x2x49x16x16xf32> -> tensor<32x?x?xf32>
return %pack : tensor<32x?x?xf32>
}

transform.sequence failures(propagate) {
^bb1(%module_op: !transform.any_op):
%unpack = transform.structured.match ops{["tensor.unpack"]} in %module_op
: (!transform.any_op) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
}