Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][bufferization] Update empty_tensor_elimination transform op #68497

Conversation

matthias-springer
Copy link
Member

The empty tensor elimination pass semantics have changed recently: when applied to a module, the One-Shot Module Analysis is run. Otherwise, the regular One-Shot Analysis is run. The latter one is slightly different because it ignores function boundaries and treats function block arguments as "read-only".

This commit updates the transform dialect op to behave in the same way.

The empty tensor elimination pass semantics have changed recently: when
applied to a module, the One-Shot Module Analysis is run. Otherwise, the
regular One-Shot Analysis is run. The latter one is slightly different
because it ignores function boundaries and treats function block
arguments as "read-only".

This commit updates the transform dialect op to behave in the same way.
@matthias-springer matthias-springer changed the title [mlir][bufferize] Update empty_tensor_elimination transform op [mlir][bufferization] Update empty_tensor_elimination transform op Oct 7, 2023
@llvmbot llvmbot added mlir mlir:bufferization Bufferization infrastructure labels Oct 7, 2023
@llvmbot
Copy link
Member

llvmbot commented Oct 7, 2023

@llvm/pr-subscribers-mlir-bufferization

@llvm/pr-subscribers-mlir

Changes

The empty tensor elimination pass semantics have changed recently: when applied to a module, the One-Shot Module Analysis is run. Otherwise, the regular One-Shot Analysis is run. The latter one is slightly different because it ignores function boundaries and treats function block arguments as "read-only".

This commit updates the transform dialect op to behave in the same way.


Full diff: https://github.com/llvm/llvm-project/pull/68497.diff

3 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Bufferization/Transforms/Transforms.h (+7)
  • (modified) mlir/lib/Dialect/Bufferization/TransformOps/BufferizationTransformOps.cpp (+2-9)
  • (modified) mlir/lib/Dialect/Bufferization/Transforms/EmptyTensorElimination.cpp (+12-12)
diff --git a/mlir/include/mlir/Dialect/Bufferization/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Bufferization/Transforms/Transforms.h
index df866daf1ab1ff6..892675954493b99 100644
--- a/mlir/include/mlir/Dialect/Bufferization/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Bufferization/Transforms/Transforms.h
@@ -32,6 +32,13 @@ struct OneShotBufferizationOptions;
 /// In the above example, the subset op is "tensor.insert_slice". When tracing
 /// back the reverse use-def chain of a the source, we end up at a
 /// "tensor.empty" op.
+LogicalResult eliminateEmptyTensors(RewriterBase &rewriter, Operation *op);
+
+/// Try to eliminate "tensor.empty" ops inside `op`.
+///
+/// This function overload accepts an existing `OneShotAnalysisState`, which
+/// contains in-place bufferization decisions. This overload is useful if an
+/// existing analysis should be reused for empty tensor elimination.
 LogicalResult eliminateEmptyTensors(RewriterBase &rewriter, Operation *op,
                                     OneShotAnalysisState &state);
 
diff --git a/mlir/lib/Dialect/Bufferization/TransformOps/BufferizationTransformOps.cpp b/mlir/lib/Dialect/Bufferization/TransformOps/BufferizationTransformOps.cpp
index b7db4917a4138ec..cbb36639a3383d7 100644
--- a/mlir/lib/Dialect/Bufferization/TransformOps/BufferizationTransformOps.cpp
+++ b/mlir/lib/Dialect/Bufferization/TransformOps/BufferizationTransformOps.cpp
@@ -117,17 +117,10 @@ void transform::EliminateEmptyTensorsOp::getEffects(
 DiagnosedSilenceableFailure transform::EliminateEmptyTensorsOp::apply(
     transform::TransformRewriter &rewriter, TransformResults &transformResults,
     TransformState &state) {
-  OneShotBufferizationOptions options;
-  options.allowReturnAllocsFromLoops = true;
-
   for (Operation *target : state.getPayloadOps(getTarget())) {
-    OneShotAnalysisState state(target, options);
-    if (failed(analyzeOp(target, state)))
-      return mlir::emitSilenceableFailure(target->getLoc())
-             << "failed to analyze op";
-    if (failed(bufferization::eliminateEmptyTensors(rewriter, target, state)))
+    if (failed(bufferization::eliminateEmptyTensors(rewriter, target)))
       return mlir::emitSilenceableFailure(target->getLoc())
-             << "failed to eliminate insert_slice anchored tensor.empty ops";
+             << "empty tensor elimination failed";
   }
   return DiagnosedSilenceableFailure::success();
 }
diff --git a/mlir/lib/Dialect/Bufferization/Transforms/EmptyTensorElimination.cpp b/mlir/lib/Dialect/Bufferization/Transforms/EmptyTensorElimination.cpp
index 2ddc51357448a7c..1a5a65bfac132a8 100644
--- a/mlir/lib/Dialect/Bufferization/Transforms/EmptyTensorElimination.cpp
+++ b/mlir/lib/Dialect/Bufferization/Transforms/EmptyTensorElimination.cpp
@@ -183,8 +183,8 @@ struct EmptyTensorElimination
 };
 } // namespace
 
-void EmptyTensorElimination::runOnOperation() {
-  Operation *op = getOperation();
+LogicalResult mlir::bufferization::eliminateEmptyTensors(RewriterBase &rewriter,
+                                                         Operation *op) {
   auto moduleOp = dyn_cast<ModuleOp>(op);
   OneShotBufferizationOptions options;
   options.allowReturnAllocsFromLoops = true;
@@ -193,21 +193,21 @@ void EmptyTensorElimination::runOnOperation() {
   OneShotAnalysisState state(op, options);
   if (moduleOp) {
     // Module analysis takes into account function boundaries.
-    if (failed(analyzeModuleOp(moduleOp, state))) {
-      signalPassFailure();
-      return;
-    }
+    if (failed(analyzeModuleOp(moduleOp, state)))
+      return failure();
   } else {
     // Regular One-Shot Bufferize ignores func.func block arguments, func.call,
     // func.return.
-    if (failed(analyzeOp(op, state))) {
-      signalPassFailure();
-      return;
-    }
+    if (failed(analyzeOp(op, state)))
+      return failure();
   }
 
-  IRRewriter rewriter(op->getContext());
-  if (failed(bufferization::eliminateEmptyTensors(rewriter, op, state)))
+  return bufferization::eliminateEmptyTensors(rewriter, op, state);
+}
+
+void EmptyTensorElimination::runOnOperation() {
+  IRRewriter rewriter(getOperation()->getContext());
+  if (failed(bufferization::eliminateEmptyTensors(rewriter, getOperation())))
     signalPassFailure();
 }
 

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:bufferization Bufferization infrastructure mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants