Skip to content

[InstCombine] Split the FMul with reassoc into a helper function, NFC #71493

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions llvm/lib/Transforms/InstCombine/InstCombineInternal.h
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Instruction *foldFMulReassoc(BinaryOperator &I);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
Expand Down
347 changes: 177 additions & 170 deletions llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -560,6 +560,180 @@ Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
return nullptr;
}

Instruction *InstCombinerImpl::foldFMulReassoc(BinaryOperator &I) {
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
Value *X, *Y;
Constant *C;

// Reassociate constant RHS with another constant to form constant
// expression.
if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
Constant *C1;
if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
// (C1 / X) * C --> (C * C1) / X
Constant *CC1 =
ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
if (CC1 && CC1->isNormalFP())
return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X / C1) * C --> X * (C / C1)
Constant *CDivC1 =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
if (CDivC1 && CDivC1->isNormalFP())
return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);

// If the constant was a denormal, try reassociating differently.
// (X / C1) * C --> X / (C1 / C)
Constant *C1DivC =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}

// We do not need to match 'fadd C, X' and 'fsub X, C' because they are
// canonicalized to 'fadd X, C'. Distributing the multiply may allow
// further folds and (X * C) + C2 is 'fma'.
if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
// (X + C1) * C --> (X * C) + (C * C1)
if (Constant *CC1 =
ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
}
if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
// (C1 - X) * C --> (C * C1) - (X * C)
if (Constant *CC1 =
ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
}

Value *Z;
if (match(&I,
m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), m_Value(Z)))) {
// Sink division: (X / Y) * Z --> (X * Z) / Y
Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
}

// sqrt(X) * sqrt(Y) -> sqrt(X * Y)
// nnan disallows the possibility of returning a number if both operands are
// negative (in that case, we should return NaN).
if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
return replaceInstUsesWith(I, Sqrt);
}

// The following transforms are done irrespective of the number of uses
// for the expression "1.0/sqrt(X)".
// 1) 1.0/sqrt(X) * X -> X/sqrt(X)
// 2) X * 1.0/sqrt(X) -> X/sqrt(X)
// We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
// has the necessary (reassoc) fast-math-flags.
if (I.hasNoSignedZeros() &&
match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
if (I.hasNoSignedZeros() &&
match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);

// Like the similar transform in instsimplify, this requires 'nsz' because
// sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
// Peek through fdiv to find squaring of square root:
// (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(XX, Y, &I);
}
// (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(Y, XX, &I);
}
}

// pow(X, Y) * X --> pow(X, Y+1)
// X * pow(X, Y) --> pow(X, Y+1)
if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
m_Value(Y))),
m_Deferred(X)))) {
Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
return replaceInstUsesWith(I, Pow);
}

if (I.isOnlyUserOfAnyOperand()) {
// pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
return replaceInstUsesWith(I, NewPow);
}
// pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
return replaceInstUsesWith(I, NewPow);
}

// powi(x, y) * powi(x, z) -> powi(x, y + z)
if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
Y->getType() == Z->getType()) {
auto *YZ = Builder.CreateAdd(Y, Z);
auto *NewPow = Builder.CreateIntrinsic(
Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
return replaceInstUsesWith(I, NewPow);
}

// exp(X) * exp(Y) -> exp(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
return replaceInstUsesWith(I, Exp);
}

// exp2(X) * exp2(Y) -> exp2(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
return replaceInstUsesWith(I, Exp2);
}
}

// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
// 1) to form a power expression (of X).
// 2) potentially shorten the critical path: After transformation, the
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}

return nullptr;
}

Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
Expand Down Expand Up @@ -607,176 +781,9 @@ Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);

if (I.hasAllowReassoc()) {
// Reassociate constant RHS with another constant to form constant
// expression.
if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
Constant *C1;
if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
// (C1 / X) * C --> (C * C1) / X
Constant *CC1 =
ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
if (CC1 && CC1->isNormalFP())
return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X / C1) * C --> X * (C / C1)
Constant *CDivC1 =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
if (CDivC1 && CDivC1->isNormalFP())
return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);

// If the constant was a denormal, try reassociating differently.
// (X / C1) * C --> X / (C1 / C)
Constant *C1DivC =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}

// We do not need to match 'fadd C, X' and 'fsub X, C' because they are
// canonicalized to 'fadd X, C'. Distributing the multiply may allow
// further folds and (X * C) + C2 is 'fma'.
if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
// (X + C1) * C --> (X * C) + (C * C1)
if (Constant *CC1 = ConstantFoldBinaryOpOperands(
Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
}
if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
// (C1 - X) * C --> (C * C1) - (X * C)
if (Constant *CC1 = ConstantFoldBinaryOpOperands(
Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
}

Value *Z;
if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
m_Value(Z)))) {
// Sink division: (X / Y) * Z --> (X * Z) / Y
Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
}

// sqrt(X) * sqrt(Y) -> sqrt(X * Y)
// nnan disallows the possibility of returning a number if both operands are
// negative (in that case, we should return NaN).
if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
return replaceInstUsesWith(I, Sqrt);
}

// The following transforms are done irrespective of the number of uses
// for the expression "1.0/sqrt(X)".
// 1) 1.0/sqrt(X) * X -> X/sqrt(X)
// 2) X * 1.0/sqrt(X) -> X/sqrt(X)
// We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
// has the necessary (reassoc) fast-math-flags.
if (I.hasNoSignedZeros() &&
match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
if (I.hasNoSignedZeros() &&
match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);

// Like the similar transform in instsimplify, this requires 'nsz' because
// sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
Op0->hasNUses(2)) {
// Peek through fdiv to find squaring of square root:
// (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(XX, Y, &I);
}
// (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(Y, XX, &I);
}
}

// pow(X, Y) * X --> pow(X, Y+1)
// X * pow(X, Y) --> pow(X, Y+1)
if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
m_Value(Y))),
m_Deferred(X)))) {
Value *Y1 =
Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
return replaceInstUsesWith(I, Pow);
}

if (I.isOnlyUserOfAnyOperand()) {
// pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
return replaceInstUsesWith(I, NewPow);
}
// pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
return replaceInstUsesWith(I, NewPow);
}

// powi(x, y) * powi(x, z) -> powi(x, y + z)
if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
Y->getType() == Z->getType()) {
auto *YZ = Builder.CreateAdd(Y, Z);
auto *NewPow = Builder.CreateIntrinsic(
Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
return replaceInstUsesWith(I, NewPow);
}

// exp(X) * exp(Y) -> exp(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
return replaceInstUsesWith(I, Exp);
}

// exp2(X) * exp2(Y) -> exp2(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
return replaceInstUsesWith(I, Exp2);
}
}

// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
// 1) to form a power expression (of X).
// 2) potentially shorten the critical path: After transformation, the
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
Op1 != Y) {
Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
Op0 != Y) {
Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
}
if (I.hasAllowReassoc())
if (Instruction *FoldedMul = foldFMulReassoc(I))
return FoldedMul;

// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
Expand Down