Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Reassociate] Use uint64_t for repeat count #94232

Merged
merged 2 commits into from
Jun 8, 2024

Conversation

dtcxzyw
Copy link
Member

@dtcxzyw dtcxzyw commented Jun 3, 2024

This patch relands #91469 and uses uint64_t for repeat count to avoid a miscompilation caused by overflow #91469 (comment).

@llvmbot
Copy link
Member

llvmbot commented Jun 3, 2024

@llvm/pr-subscribers-llvm-transforms

Author: Yingwei Zheng (dtcxzyw)

Changes

This patch relands #91469 and uses uint64_t for repeat count to avoid a miscompilation caused by overflow #91469 (comment).


Full diff: https://github.com/llvm/llvm-project/pull/94232.diff

2 Files Affected:

  • (modified) llvm/lib/Transforms/Scalar/Reassociate.cpp (+11-108)
  • (modified) llvm/test/Transforms/Reassociate/repeats.ll (+31-14)
diff --git a/llvm/lib/Transforms/Scalar/Reassociate.cpp b/llvm/lib/Transforms/Scalar/Reassociate.cpp
index c73d7c8d83bec..6cf097094ddd0 100644
--- a/llvm/lib/Transforms/Scalar/Reassociate.cpp
+++ b/llvm/lib/Transforms/Scalar/Reassociate.cpp
@@ -302,98 +302,7 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
   return Res;
 }
 
-/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
-/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
-/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
-/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
-/// even x in Bitwidth-bit arithmetic.
-static unsigned CarmichaelShift(unsigned Bitwidth) {
-  if (Bitwidth < 3)
-    return Bitwidth - 1;
-  return Bitwidth - 2;
-}
-
-/// Add the extra weight 'RHS' to the existing weight 'LHS',
-/// reducing the combined weight using any special properties of the operation.
-/// The existing weight LHS represents the computation X op X op ... op X where
-/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
-/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
-/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
-/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
-static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
-  // If we were working with infinite precision arithmetic then the combined
-  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
-  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
-  // for nilpotent operations and addition, but not for idempotent operations
-  // and multiplication), so it is important to correctly reduce the combined
-  // weight back into range if wrapping would be wrong.
-
-  // If RHS is zero then the weight didn't change.
-  if (RHS.isMinValue())
-    return;
-  // If LHS is zero then the combined weight is RHS.
-  if (LHS.isMinValue()) {
-    LHS = RHS;
-    return;
-  }
-  // From this point on we know that neither LHS nor RHS is zero.
-
-  if (Instruction::isIdempotent(Opcode)) {
-    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
-    // weight of 1.  Keeping weights at zero or one also means that wrapping is
-    // not a problem.
-    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
-    return; // Return a weight of 1.
-  }
-  if (Instruction::isNilpotent(Opcode)) {
-    // Nilpotent means X op X === 0, so reduce weights modulo 2.
-    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
-    LHS = 0; // 1 + 1 === 0 modulo 2.
-    return;
-  }
-  if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
-    // TODO: Reduce the weight by exploiting nsw/nuw?
-    LHS += RHS;
-    return;
-  }
-
-  assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
-         "Unknown associative operation!");
-  unsigned Bitwidth = LHS.getBitWidth();
-  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
-  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
-  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
-  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
-  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
-  // which by a happy accident means that they can always be represented using
-  // Bitwidth bits.
-  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
-  // the Carmichael number).
-  if (Bitwidth > 3) {
-    /// CM - The value of Carmichael's lambda function.
-    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
-    // Any weight W >= Threshold can be replaced with W - CM.
-    APInt Threshold = CM + Bitwidth;
-    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
-    // For Bitwidth 4 or more the following sum does not overflow.
-    LHS += RHS;
-    while (LHS.uge(Threshold))
-      LHS -= CM;
-  } else {
-    // To avoid problems with overflow do everything the same as above but using
-    // a larger type.
-    unsigned CM = 1U << CarmichaelShift(Bitwidth);
-    unsigned Threshold = CM + Bitwidth;
-    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
-           "Weights not reduced!");
-    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
-    while (Total >= Threshold)
-      Total -= CM;
-    LHS = Total;
-  }
-}
-
-using RepeatedValue = std::pair<Value*, APInt>;
+using RepeatedValue = std::pair<Value *, uint64_t>;
 
 /// Given an associative binary expression, return the leaf
 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
@@ -475,7 +384,6 @@ static bool LinearizeExprTree(Instruction *I,
   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
          "Expected a UnaryOperator or BinaryOperator!");
   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
-  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
   unsigned Opcode = I->getOpcode();
   assert(I->isAssociative() && I->isCommutative() &&
          "Expected an associative and commutative operation!");
@@ -490,8 +398,8 @@ static bool LinearizeExprTree(Instruction *I,
   // with their weights, representing a certain number of paths to the operator.
   // If an operator occurs in the worklist multiple times then we found multiple
   // ways to get to it.
-  SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
-  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
+  SmallVector<std::pair<Instruction *, uint64_t>, 8> Worklist; // (Op, Weight)
+  Worklist.push_back(std::make_pair(I, 1));
   bool Changed = false;
 
   // Leaves of the expression are values that either aren't the right kind of
@@ -509,7 +417,7 @@ static bool LinearizeExprTree(Instruction *I,
 
   // Leaves - Keeps track of the set of putative leaves as well as the number of
   // paths to each leaf seen so far.
-  using LeafMap = DenseMap<Value *, APInt>;
+  using LeafMap = DenseMap<Value *, uint64_t>;
   LeafMap Leaves; // Leaf -> Total weight so far.
   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
   const DataLayout DL = I->getModule()->getDataLayout();
@@ -518,8 +426,8 @@ static bool LinearizeExprTree(Instruction *I,
   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
 #endif
   while (!Worklist.empty()) {
-    std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
-    I = P.first; // We examine the operands of this binary operator.
+    // We examine the operands of this binary operator.
+    auto [I, Weight] = Worklist.pop_back_val();
 
     if (isa<OverflowingBinaryOperator>(I)) {
       Flags.HasNUW &= I->hasNoUnsignedWrap();
@@ -528,7 +436,6 @@ static bool LinearizeExprTree(Instruction *I,
 
     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
       Value *Op = I->getOperand(OpIdx);
-      APInt Weight = P.second; // Number of paths to this operand.
       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
 
@@ -562,7 +469,7 @@ static bool LinearizeExprTree(Instruction *I,
                "In leaf map but not visited!");
 
         // Update the number of paths to the leaf.
-        IncorporateWeight(It->second, Weight, Opcode);
+        It->second += Weight;
 
         // If we still have uses that are not accounted for by the expression
         // then it is not safe to modify the value.
@@ -625,10 +532,7 @@ static bool LinearizeExprTree(Instruction *I,
       // Node initially thought to be a leaf wasn't.
       continue;
     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
-    APInt Weight = It->second;
-    if (Weight.isMinValue())
-      // Leaf already output or weight reduction eliminated it.
-      continue;
+    uint64_t Weight = It->second;
     // Ensure the leaf is only output once.
     It->second = 0;
     Ops.push_back(std::make_pair(V, Weight));
@@ -642,7 +546,7 @@ static bool LinearizeExprTree(Instruction *I,
   if (Ops.empty()) {
     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
     assert(Identity && "Associative operation without identity!");
-    Ops.emplace_back(Identity, APInt(Bitwidth, 1));
+    Ops.emplace_back(Identity, 1);
   }
 
   return Changed;
@@ -1188,8 +1092,7 @@ Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
   Factors.reserve(Tree.size());
   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
     RepeatedValue E = Tree[i];
-    Factors.append(E.second.getZExtValue(),
-                   ValueEntry(getRank(E.first), E.first));
+    Factors.append(E.second, ValueEntry(getRank(E.first), E.first));
   }
 
   bool FoundFactor = false;
@@ -2368,7 +2271,7 @@ void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
   SmallVector<ValueEntry, 8> Ops;
   Ops.reserve(Tree.size());
   for (const RepeatedValue &E : Tree)
-    Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
+    Ops.append(E.second, ValueEntry(getRank(E.first), E.first));
 
   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
 
diff --git a/llvm/test/Transforms/Reassociate/repeats.ll b/llvm/test/Transforms/Reassociate/repeats.ll
index ba25c4bfc643c..8600777877bb3 100644
--- a/llvm/test/Transforms/Reassociate/repeats.ll
+++ b/llvm/test/Transforms/Reassociate/repeats.ll
@@ -60,7 +60,8 @@ define i3 @foo3x5(i3 %x) {
 ; CHECK-SAME: i3 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP3:%.*]] = mul i3 [[X]], [[X]]
 ; CHECK-NEXT:    [[TMP4:%.*]] = mul i3 [[TMP3]], [[X]]
-; CHECK-NEXT:    ret i3 [[TMP4]]
+; CHECK-NEXT:    [[TMP5:%.*]] = mul i3 [[TMP4]], [[TMP3]]
+; CHECK-NEXT:    ret i3 [[TMP5]]
 ;
   %tmp1 = mul i3 %x, %x
   %tmp2 = mul i3 %tmp1, %x
@@ -74,7 +75,8 @@ define i3 @foo3x5_nsw(i3 %x) {
 ; CHECK-LABEL: define i3 @foo3x5_nsw(
 ; CHECK-SAME: i3 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP3:%.*]] = mul i3 [[X]], [[X]]
-; CHECK-NEXT:    [[TMP4:%.*]] = mul nsw i3 [[TMP3]], [[X]]
+; CHECK-NEXT:    [[TMP2:%.*]] = mul i3 [[TMP3]], [[X]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i3 [[TMP2]], [[TMP3]]
 ; CHECK-NEXT:    ret i3 [[TMP4]]
 ;
   %tmp1 = mul i3 %x, %x
@@ -89,7 +91,8 @@ define i3 @foo3x6(i3 %x) {
 ; CHECK-LABEL: define i3 @foo3x6(
 ; CHECK-SAME: i3 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i3 [[X]], [[X]]
-; CHECK-NEXT:    [[TMP2:%.*]] = mul i3 [[TMP1]], [[TMP1]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i3 [[TMP1]], [[X]]
+; CHECK-NEXT:    [[TMP2:%.*]] = mul i3 [[TMP3]], [[TMP3]]
 ; CHECK-NEXT:    ret i3 [[TMP2]]
 ;
   %tmp1 = mul i3 %x, %x
@@ -106,7 +109,9 @@ define i3 @foo3x7(i3 %x) {
 ; CHECK-SAME: i3 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP5:%.*]] = mul i3 [[X]], [[X]]
 ; CHECK-NEXT:    [[TMP6:%.*]] = mul i3 [[TMP5]], [[X]]
-; CHECK-NEXT:    ret i3 [[TMP6]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i3 [[TMP6]], [[X]]
+; CHECK-NEXT:    [[TMP7:%.*]] = mul i3 [[TMP3]], [[TMP6]]
+; CHECK-NEXT:    ret i3 [[TMP7]]
 ;
   %tmp1 = mul i3 %x, %x
   %tmp2 = mul i3 %tmp1, %x
@@ -123,7 +128,8 @@ define i4 @foo4x8(i4 %x) {
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
 ; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP1]], [[TMP1]]
-; CHECK-NEXT:    ret i4 [[TMP4]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP4]], [[TMP4]]
+; CHECK-NEXT:    ret i4 [[TMP3]]
 ;
   %tmp1 = mul i4 %x, %x
   %tmp2 = mul i4 %tmp1, %x
@@ -140,8 +146,9 @@ define i4 @foo4x9(i4 %x) {
 ; CHECK-LABEL: define i4 @foo4x9(
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
-; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
-; CHECK-NEXT:    [[TMP8:%.*]] = mul i4 [[TMP2]], [[TMP1]]
+; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP1]], [[TMP1]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP2]], [[X]]
+; CHECK-NEXT:    [[TMP8:%.*]] = mul i4 [[TMP3]], [[TMP2]]
 ; CHECK-NEXT:    ret i4 [[TMP8]]
 ;
   %tmp1 = mul i4 %x, %x
@@ -160,7 +167,8 @@ define i4 @foo4x10(i4 %x) {
 ; CHECK-LABEL: define i4 @foo4x10(
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
-; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP1]], [[TMP1]]
+; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP4]], [[X]]
 ; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP2]], [[TMP2]]
 ; CHECK-NEXT:    ret i4 [[TMP3]]
 ;
@@ -181,7 +189,8 @@ define i4 @foo4x11(i4 %x) {
 ; CHECK-LABEL: define i4 @foo4x11(
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
-; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP1]], [[TMP1]]
+; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP4]], [[X]]
 ; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP2]], [[X]]
 ; CHECK-NEXT:    [[TMP10:%.*]] = mul i4 [[TMP3]], [[TMP2]]
 ; CHECK-NEXT:    ret i4 [[TMP10]]
@@ -204,7 +213,9 @@ define i4 @foo4x12(i4 %x) {
 ; CHECK-LABEL: define i4 @foo4x12(
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
-; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP1]], [[TMP1]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP1]], [[X]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP4]], [[TMP4]]
+; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP3]], [[TMP3]]
 ; CHECK-NEXT:    ret i4 [[TMP2]]
 ;
   %tmp1 = mul i4 %x, %x
@@ -227,7 +238,9 @@ define i4 @foo4x13(i4 %x) {
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
 ; CHECK-NEXT:    [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
-; CHECK-NEXT:    [[TMP12:%.*]] = mul i4 [[TMP2]], [[TMP1]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP2]], [[TMP2]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP3]], [[X]]
+; CHECK-NEXT:    [[TMP12:%.*]] = mul i4 [[TMP4]], [[TMP3]]
 ; CHECK-NEXT:    ret i4 [[TMP12]]
 ;
   %tmp1 = mul i4 %x, %x
@@ -252,7 +265,9 @@ define i4 @foo4x14(i4 %x) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
 ; CHECK-NEXT:    [[TMP6:%.*]] = mul i4 [[TMP1]], [[X]]
 ; CHECK-NEXT:    [[TMP7:%.*]] = mul i4 [[TMP6]], [[TMP6]]
-; CHECK-NEXT:    ret i4 [[TMP7]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP7]], [[X]]
+; CHECK-NEXT:    [[TMP5:%.*]] = mul i4 [[TMP4]], [[TMP4]]
+; CHECK-NEXT:    ret i4 [[TMP5]]
 ;
   %tmp1 = mul i4 %x, %x
   %tmp2 = mul i4 %tmp1, %x
@@ -276,8 +291,10 @@ define i4 @foo4x15(i4 %x) {
 ; CHECK-SAME: i4 [[X:%.*]]) {
 ; CHECK-NEXT:    [[TMP1:%.*]] = mul i4 [[X]], [[X]]
 ; CHECK-NEXT:    [[TMP6:%.*]] = mul i4 [[TMP1]], [[X]]
-; CHECK-NEXT:    [[TMP5:%.*]] = mul i4 [[TMP6]], [[X]]
-; CHECK-NEXT:    [[TMP14:%.*]] = mul i4 [[TMP5]], [[TMP6]]
+; CHECK-NEXT:    [[TMP3:%.*]] = mul i4 [[TMP6]], [[TMP6]]
+; CHECK-NEXT:    [[TMP4:%.*]] = mul i4 [[TMP3]], [[X]]
+; CHECK-NEXT:    [[TMP5:%.*]] = mul i4 [[TMP4]], [[X]]
+; CHECK-NEXT:    [[TMP14:%.*]] = mul i4 [[TMP5]], [[TMP4]]
 ; CHECK-NEXT:    ret i4 [[TMP14]]
 ;
   %tmp1 = mul i4 %x, %x

if (Weight.isMinValue())
// Leaf already output or weight reduction eliminated it.
continue;
uint64_t Weight = It->second;
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As we don't reduce weight for nilpotent ops now (e.g., xor), the weight cannot be zero.

@efriedma-quic
Copy link
Collaborator

I don't see any overflow checks here... is there some reason you can't overflow a uint64_t?

@dtcxzyw
Copy link
Member Author

dtcxzyw commented Jun 3, 2024

I don't see any overflow checks here... is there some reason you can't overflow a uint64_t?

I think it overflows when there are more than 2^64 instructions in the IR. Can you provide a counterexample?

@efriedma-quic
Copy link
Collaborator

I don't have a specific example, but there should probably be a comment with the invariants somewhere. (If an operand can show up multiple times in the tree, you might run into issues?)

@@ -562,7 +469,8 @@ static bool LinearizeExprTree(Instruction *I,
"In leaf map but not visited!");

// Update the number of paths to the leaf.
IncorporateWeight(It->second, Weight, Opcode);
It->second += Weight;
assert(It->second >= Weight && "Weight overflows");
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

See

APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
APInt Res = *this+RHS;
Overflow = Res.ult(RHS);
return Res;
}

Copy link
Contributor

@nikic nikic left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. I initially thought we could cause overflow with an exponential tree like https://gist.github.com/nikic/e7736ce11aa66b75ac8fa2b0bf112537. But apparently this is not possible, because any value with multiple uses will be considered as a leaf. That means that the weights can only increase linearly and not exponentially.

@dtcxzyw dtcxzyw merged commit 645fb04 into llvm:main Jun 8, 2024
7 checks passed
@dtcxzyw dtcxzyw deleted the fix-reassoc-weight-reduction branch June 8, 2024 14:28
nekoshirro pushed a commit to nekoshirro/Alchemist-LLVM that referenced this pull request Jun 9, 2024
This patch relands llvm#91469 and uses `uint64_t` for repeat count to avoid
a miscompilation caused by overflow
llvm#91469 (comment).

Signed-off-by: Hafidz Muzakky <ais.muzakky@gmail.com>
@HerrCai0907 HerrCai0907 mentioned this pull request Jun 13, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants