Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[onnx] Fix onnx.Gather for bad expansion #3625

Merged
merged 1 commit into from
Aug 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 23 additions & 6 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1442,10 +1442,16 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
flattenedIndices = rewriter.create<Torch::AtenUnsqueezeOp>(
loc, flattenIndicesTy, reshapedIndices, constZero);
} else if (indicesRank > 1) {
Value endDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(indicesRank - 2));
flattenedIndices = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenIndicesTy, reshapedIndices, batchDimCountVal, endDim);
if (batchDimCount > indicesRank - 2) {
flattenedIndices = rewriter.create<Torch::AtenUnsqueezeOp>(
loc, flattenIndicesTy, reshapedIndices, batchDimCountVal);
} else {
Value endDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(indicesRank - 2));
flattenedIndices = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenIndicesTy, reshapedIndices, batchDimCountVal,
endDim);
}
}

// step 8. Expand `r-b-indices_shape[-1]` dims of flattened indices.
Expand All @@ -1467,8 +1473,12 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
Value endDim = rewriter.create<Torch::ConstantIntOp>(
loc,
rewriter.getI64IntegerAttr(batchDimCount + indicesLastDim - 1));
Value flattenedData = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenDataTy, data, batchDimCountVal, endDim);
Value flattenedData = data;

if (indicesLastDim != 1) {
flattenedData = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flattenDataTy, data, batchDimCountVal, endDim);
}

// step 10. Now we have flattenedData and expandedIndices of same rank
// to perform gather operation.
Expand All @@ -1484,6 +1494,13 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
binder.op, resultType, gather, /*dim=*/constZero);
return success();
}

if (unflattenIndicesDims.empty()) {
rewriter.replaceOpWithNewOp<Torch::AtenSqueezeDimOp>(
binder.op, resultType, gather, /*dim=*/batchDimCountVal);
return success();
}

Value unflattenSizeList = rewriter.create<Torch::PrimListConstructOp>(
loc, intListTy, unflattenIndicesDims);
rewriter.replaceOpWithNewOp<Torch::AtenUnflattenIntOp>(
Expand Down
35 changes: 35 additions & 0 deletions test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,41 @@ func.func @test_gather_nd_1D_indices(%arg0: !torch.vtensor<[2,6,8,5],f32>, %arg1

// -----

// CHECK-LABEL: func.func @test_gathernd_example_int32_batch_dim1
func.func @test_gathernd_example_int32_batch_dim1(%arg0: !torch.vtensor<[2,2,2],si32>, %arg1: !torch.vtensor<[2,1],si64>) -> !torch.vtensor<[2,2],si32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 17 : si64} {
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[DIM0:.+]] = torch.aten.size.int %arg0, %[[INT0]]
// CHECK: %[[INT1:.+]] = torch.constant.int 1
// CHECK: %[[DIM1:.+]] = torch.aten.size.int %arg0, %[[INT1]]
// CHECK: %[[INT2:.+]] = torch.constant.int 2
// CHECK: %[[DIM2:.+]] = torch.aten.size.int %arg0, %[[INT2]]
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: %[[INT1_1:.+]] = torch.constant.int 1
// CHECK: %[[INT0_2:.+]] = torch.constant.int 0
// CHECK: %[[B0:.+]] = torch.aten.size.int %arg1, %[[INT0_2]]
// CHECK: %[[INT1_3:.+]] = torch.constant.int 1
// CHECK: %[[INT1_4:.+]] = torch.constant.int 1
// CHECK: %[[SLICE:.+]] = torch.aten.slice.Tensor %arg1, %[[INT1_3]], %[[INT0_0]], %[[INT1_4]], %[[INT1_1]]
// CHECK: %[[LT:.+]] = torch.aten.lt.Scalar %[[SLICE]], %[[INT0_0]]
// CHECK: %[[ADD:.+]] = torch.aten.add.Scalar %[[SLICE]], %[[DIM1]], %[[INT1_1]]
// CHECK: %[[WHERE:.+]] = torch.aten.where.self %[[LT]], %[[ADD]], %[[SLICE]]
// CHECK: %[[LIST:.+]] = torch.prim.ListConstruct %[[B0]], %[[INT1_1]]
// CHECK: %[[VIEW:.+]] = torch.aten.view %[[WHERE]], %[[LIST]]
// CHECK: %[[INT1_5:.+]] = torch.constant.int 1
// CHECK: %[[UNSQ:.+]] = torch.aten.unsqueeze %[[VIEW]], %[[INT1_5]]
// CHECK: %[[LIST:.+]] = torch.prim.ListConstruct %[[DIM0]], %[[INT1_1]], %[[DIM2]]
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[EXPAND:.+]] = torch.aten.expand %[[UNSQ]], %[[LIST]], %[[FALSE]]
// CHECK: %[[INT1_6:.+]] = torch.constant.int 1
// CHECK: %[[GATHER:.+]] = torch.aten.gather %arg0, %[[INT1_5]], %[[EXPAND]], %[[FALSE]]
// CHECK: %[[SQ:.+]] = torch.aten.squeeze.dim %[[GATHER]], %[[INT1_5]]
%none = torch.constant.none
%0 = torch.operator "onnx.GatherND"(%arg0, %arg1) {torch.onnx.batch_dims = 1 : si64} : (!torch.vtensor<[2,2,2],si32>, !torch.vtensor<[2,1],si64>) -> !torch.vtensor<[2,2],si32>
return %0 : !torch.vtensor<[2,2],si32>
}

// -----

// CHECK-LABEL: func.func @test_gather_elements
func.func @test_gather_elements(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5], si64>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
// CHECK-DAG: %[[INT0:.+]] = torch.constant.int 0
Expand Down
Loading