Skip to content

Implementation of torch-to-linalg lowering of AtenOuterOp #4099

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp
Original file line number Diff line number Diff line change
@@ -1894,6 +1894,63 @@ class DecomposeAtenAtleast1dOp : public OpRewritePattern<AtenAtleast1dOp> {
};
} // namespace

// Decompose 'aten.outer' into 'aten.unsqueeze', 'aten.matmul'

namespace {
class DecomposeAtenOuterOp : public OpRewritePattern<AtenOuterOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenOuterOp op,
PatternRewriter &rewriter) const override {

Location loc = op.getLoc();
Value input = op.getSelf();
Value vec2 = op.getVec2();
Type opType = op.getType();

auto inputType = cast<BaseTensorType>(input.getType());
auto vec2Type = cast<BaseTensorType>(vec2.getType());

// Check if tensors not empty
if (!inputType.hasSizes() || !vec2Type.hasSizes()) {
return rewriter.notifyMatchFailure(
op, "Inputs must be ranked tensors for aten.outer");
}

// Check if both tensors are 1-dimensional
SmallVector<int64_t> inputShape(inputType.getSizes());
SmallVector<int64_t> vec2Shape(vec2Type.getSizes());

if (inputShape.size() != 1 || vec2Shape.size() != 1) {
return rewriter.notifyMatchFailure(
op, "Inputs must be 1-dimensional vectors for aten.outer");
}

Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1)); // Dimension index
inputShape.push_back(1);
Type inputMatrixType = inputType.getWithSizesAndDtype(
inputShape, inputType.getOptionalDtype());

Value inputMatrix =
rewriter.create<AtenUnsqueezeOp>(loc, inputMatrixType, input, one);

Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
vec2Shape.insert(vec2Shape.begin(), 1);
Type vec2MatrixType =
vec2Type.getWithSizesAndDtype(vec2Shape, vec2Type.getOptionalDtype());

Value vec2Matrix =
rewriter.create<AtenUnsqueezeOp>(loc, vec2MatrixType, vec2, zero);

rewriter.replaceOpWithNewOp<AtenMatmulOp>(op, opType, inputMatrix,
vec2Matrix);
return success();
}
};
} // namespace

namespace {
// Decompose aten.atleast_2d into: aten.reshape. See
// https://github.com/pytorch/pytorch/blob/9a8ab778d34bd24c5caceb340837483decc4c311/torch/_refs/__init__.py#L2604
@@ -11591,6 +11648,7 @@ class DecomposeComplexOpsPass
addPatternIfTargetOpIsIllegal<DecomposeAtenEmptyLikeOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeConstantTensorAllocLikeOp<AtenOnesLikeOp, 1>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenOuterOp>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeConstantTensorAllocLikeOp<AtenZerosLikeOp, 0>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenStackOp>(patterns);
1 change: 1 addition & 0 deletions lib/Dialect/Torch/Transforms/LowerToBackendContract.cpp
Original file line number Diff line number Diff line change
@@ -379,6 +379,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
target.addIllegalOp<AtenSoftshrinkOp>();
target.addIllegalOp<AtenEmptyLikeOp>();
target.addIllegalOp<AtenOnesLikeOp>();
target.addIllegalOp<AtenOuterOp>();
target.addIllegalOp<AtenZerosLikeOp>();
target.addIllegalOp<AtenStackOp>();
target.addIllegalOp<AtenHstackOp>();
1 change: 1 addition & 0 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
@@ -3810,6 +3810,7 @@
}

ONNX_TOSA_XFAIL_SET = {
"AtenOuter_basic",
"AtenFftRfft2DLastDim_basic",
"AtenFftRfft2DMiddleDim_basic",
"AtenNonzero1DDynamicModule_basic",
58 changes: 58 additions & 0 deletions projects/pt1/python/torch_mlir_e2e_test/test_suite/matmul.py
Original file line number Diff line number Diff line change
@@ -918,3 +918,61 @@ def forward(self, a, b):
@register_test_case(module_factory=lambda: AtenLinalgCrossDynamic())
def AtenLinalgCrossDynamic_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 3, 1, 6), tu.rand(4, 3, 7, 1))


# ==============================================================================


class AtenOuter(torch.nn.Module):
def __init__(self):
super().__init__()

@export
@annotate_args(
[
None,
([3], torch.float32, True),
([3], torch.float32, True),
]
)
def forward(self, lhs, rhs):
return torch.outer(lhs, rhs)


@register_test_case(module_factory=lambda: AtenOuter())
def AtenOuter_basic(module, tu: TestUtils):
module.forward(tu.rand(3), tu.rand(2))


# ==============================================================================


class AtenOuterDynamic(torch.nn.Module):
def __init__(self):
super().__init__()

@export
@annotate_args(
[
None,
([-1], torch.float32, True),
([-1], torch.float32, True),
]
)
def forward(self, lhs, rhs):
return torch.outer(lhs, rhs)


@register_test_case(module_factory=lambda: AtenOuterDynamic())
def AtenOuterDynamic_basic(module, tu: TestUtils):
module.forward(tu.rand(5), tu.rand(5))


@register_test_case(module_factory=lambda: AtenOuterDynamic())
def AtenOuterDynamic_lhs_larger(module, tu: TestUtils):
module.forward(tu.rand(7), tu.rand(4))


@register_test_case(module_factory=lambda: AtenOuterDynamic())
def AtenOuterDynamic_rhs_larger(module, tu: TestUtils):
module.forward(tu.rand(2), tu.rand(6))