Code release for Adversarial Branch Architecture Search for Unsupervised Domain Adaptation.
If you use this code or the attached files for research purposes, please cite
@inproceedings{robbiano2021adversarial,
title = {Adversarial Branch Architecture Search for Unsupervised Domain Adaptation},
author = {Robbiano, Luca and Ur Rahman, Muhammad Rameez and Galasso, Fabio and Caputo, Barbara and Carlucci, Fabio Maria},
year = 2022,
booktitle = {2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
volume = {},
number = {},
pages = {1008--1018},
doi = {10.1109/WACV51458.2022.00108}
}
- CUDA
- Python 3.6 or newer
- PyTorch 1.6 or newer
- Other Python libraries listed in
requirements.txt
- 10 GB available on each GPU
- Optional but strongly recommended: a cluster capable of running at least 8 parallel GPU jobs
To launch an ABAS run (OfficeHome, source Art, target Clipart):
./scripts/launch_slurm_stub.sh \
--source art-oh \
--target clipart-oh \
--criterion 'regression(regressors/regr_no-pseudolabels_for_oh.pkl)' \
--run-criterion 'regression(regressors/regr_for_oh.pkl)' \
--net resnet50 \
--da alda \
--num-iterations 24 \
--min-budget 2000 \
--max-budget 6000 \
--kill-diverging \
--data-root /path/to/data
The script launch_slurm_stub.sh
needs to be customized according to your cluster setup. A similar script can be developed for other schedulers, like PBS.
Once the job is done, a result.pkl
file will be produced. To analyze the results, run
./analysis.py --result experiments/your-experiment/results_file.pkl
You can test a specific configuration with
./train_model.py \
--net resnet50 \
--da alda \
--gpu 0 \
--source art-oh \
--target clipart-oh \
--config base.weight_da=0.88,disc.dropout=0.1,disc.hidden_size_log=10,disc.num_fc_layers=5,net.bottleneck_size_log=9 \
--data-root /path/to/data
- Luca Robbiano luca.robbiano@polito.it
- Muhammad Rameez Ur Rahman rahman@di.uniroma1.it
- Fabio Maria Carlucci
This code and the attached files are distributed under the BSD 3-Clause license.