Skip to content
/ abas Public

Code release for Adversarial Branch Architecture Search for Unsupervised Domain Adaptation

License

Notifications You must be signed in to change notification settings

lr94/abas

Repository files navigation

ABAS

ABAS

Code release for Adversarial Branch Architecture Search for Unsupervised Domain Adaptation.

If you use this code or the attached files for research purposes, please cite

@inproceedings{robbiano2021adversarial,
	title        = {Adversarial Branch Architecture Search for Unsupervised Domain Adaptation},
	author       = {Robbiano, Luca and Ur Rahman, Muhammad Rameez and Galasso, Fabio and Caputo, Barbara and Carlucci, Fabio Maria},
	year         = 2022,
	booktitle    = {2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
	volume       = {},
	number       = {},
	pages        = {1008--1018},
	doi          = {10.1109/WACV51458.2022.00108}
}

Software requirements

  • CUDA
  • Python 3.6 or newer
  • PyTorch 1.6 or newer
  • Other Python libraries listed in requirements.txt

Hardware requirements

  • 10 GB available on each GPU
  • Optional but strongly recommended: a cluster capable of running at least 8 parallel GPU jobs

Run experiments

To launch an ABAS run (OfficeHome, source Art, target Clipart):

./scripts/launch_slurm_stub.sh \
  --source art-oh \
  --target clipart-oh \
  --criterion 'regression(regressors/regr_no-pseudolabels_for_oh.pkl)' \
  --run-criterion 'regression(regressors/regr_for_oh.pkl)' \
  --net resnet50 \
  --da alda \
  --num-iterations 24 \
  --min-budget 2000 \
  --max-budget 6000 \
  --kill-diverging \
  --data-root /path/to/data

The script launch_slurm_stub.sh needs to be customized according to your cluster setup. A similar script can be developed for other schedulers, like PBS. Once the job is done, a result.pkl file will be produced. To analyze the results, run

./analysis.py --result experiments/your-experiment/results_file.pkl

You can test a specific configuration with

./train_model.py \
    --net resnet50 \
    --da alda \
    --gpu 0 \
    --source art-oh \
    --target clipart-oh \
    --config base.weight_da=0.88,disc.dropout=0.1,disc.hidden_size_log=10,disc.num_fc_layers=5,net.bottleneck_size_log=9 \
    --data-root /path/to/data

Contributors

License

This code and the attached files are distributed under the BSD 3-Clause license.

About

Code release for Adversarial Branch Architecture Search for Unsupervised Domain Adaptation

Topics

Resources

License

Stars

Watchers

Forks