Skip to content

This is the code package related to the follow scientific article: Luca Sanguinetti, Alessio Zappone, Merouane Debbah 'Deep-Learning-Power-Allocation-in-Massive-MIMO' presented at the Asilomar Conference on Signals, Systems, and Computers, 2018. http://www.asilomarsscconf.org

Notifications You must be signed in to change notification settings

lucasanguinetti/Deep-Learning-Power-Allocation-in-Massive-MIMO

Repository files navigation

Deep-Learning-Power-Allocation-in-Massive-MIMO

This is the code package related to the following scientific article: Luca Sanguinetti, Alessio Zappone, Merouane Debbah 'Deep-Learning-Power-Allocation-in-Massive-MIMO' presented at the Asilomar Conference on Signals, Systems, and Computers, 2018. http://www.asilomarsscconf.org

Abstract of Article

This work advocates the use of deep learning to perform max-min and max-prod power allocation in the downlink of Massive MIMO networks. More precisely, a deep neural network is trained to learn the map between the positions of user equipments (UEs) and the optimal power allocation policies, and then used to predict the power allocation profiles for a new set of UEs’ positions. The use of deep learning significantly improves the complexity-performance trade-off of power allocation, compared to traditional optimization-oriented methods. Particularly, the proposed approach does not require the computation of any statistical average, which would be instead necessary by using standard methods, and is able to guarantee near-optimal performance.

Content of MATLAB Code Package

The package contains a simulation environment, based on MATLAB, that allows to produce the data samples that are needed to train the neural network. The max-min and max-prod allocation strategies are simulated with the MR and M-MMSE precoding schemes. This is the code package used to reproduce Figure 7.2 in the monograph:

Emil Bjornson, Jakob Hoydis and Luca Sanguinetti (2017), "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency", Foundations and Trends in Signal Processing: Vol. 11, No. 3-4, pp. 154-655.

You can download a free PDF of the manuscript at https://massivemimobook.com

The latest version of the code package for the entire book is always found in our Github repository:

https://github.com/emilbjornson/massivemimobook

Content of KERAS Code Package

The package containining the simulation environment, based on KERAS, to train and execute the deep learning power allocation algorithm with the max-min and max-prod power allocation strategies is contained in the 'PYTHON_CODE' folder. To run it, one needs to first generate a data sample and a testing sample by using the MATLAB code (which produces the 'MyDataFile.mat' files), and then run the 'transform_data_maxmin.m' and 'transform_data_maxprod.m' to extract the data required for the python code.

The entire data set to generate the results of the paper:

Luca Sanguinetti, Alessio Zappone, Merouane Debbah 'Deep-Learning-Power-Allocation-in-Massive-MIMO' presented at the Asilomar Conference on Signals, Systems, and Computers, 2018. http://www.asilomarsscconf.org

can be found at the following link https://data.ieeemlc.org/Ds2Detail

License and Referencing

This code package is licensed under the GPLv2 license. If you in any way use this code for research that results in publications, please cite our original article listed above.

About

This is the code package related to the follow scientific article: Luca Sanguinetti, Alessio Zappone, Merouane Debbah 'Deep-Learning-Power-Allocation-in-Massive-MIMO' presented at the Asilomar Conference on Signals, Systems, and Computers, 2018. http://www.asilomarsscconf.org

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published