Dense is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized design for easy research; a set of command line tools are also provided for fast development and testing. A set of easy-to-use interfaces to Huggingface🤗's state-of-the-art pre-trained transformers ensures Dense's superior performance.
Dense is currently under initial development stage. We will be actively adding new features and API changes may happen.
- Command line interface for dense retriever training/encoding and dense index search.
- Flexible and extendable Pytorch retriever models.
- Highly efficient Trainer, a subclass of Huggingface Trainer, that naively support training performance features like mixed precision and distributed data parallel.
- Fast and memory-efficient train/inference data access based on memory mapping with Apache Arrow through Huggingface datasets.
First install the dependencies. The current code base has been testes with,
pytorch==1.8.0
faiss-cpu==1.6.5
transformers==4.2.0
datasets==1.1.3
Then clone this repo and run pip.
git https://github.com/luyug/Dense
cd Dense
pip install .
Or typically for research, install as editable,
pip install --editable .
Training: Each line of the the Train file is a training instance,
{'query': TEXT_TYPE, 'positives': List[TEXT_TYPE], 'negatives': List[TEXT_TYPE]}
...
Inference/Encoding: Each line of the the encoding file is a piece of text to be encoded,
{text_id: "xxx", 'text': TEXT_TYPE}
...
Here TEXT_TYPE
can be either raw string or pre-tokenized ids, i.e. List[int]
. Using the latter can help lower data processing latency during training to reduce/eliminate GPU wait. Note: the current code requires text_id of passages/contexts to be convertible to integer, e.g. integers or string of integers.
To train a simple dense retriever, call the dense.driver.train
module,
python -m dense.driver.train \
--output_dir $OUTDIR \
--model_name_or_path bert-base-uncased \
--do_train \
--save_steps 20000 \
--train_dir $TRAIN_DIR \
--fp16 \
--per_device_train_batch_size 8 \
--learning_rate 5e-6 \
--num_train_epochs 2 \
--dataloader_num_workers 2
Here we picked bert-base-uncased
BERT weight from Huggingface Hub and turned on AMP with --fp16
to speed up training. Several command flags are provided in addition to configure the learned model, e.g. --add_pooler
which adds an linear projection. A full list command line arguments can be found in dense.arguments
.
Check out the run.py in examples directory for a fully configurable train/test loop. Typically you will do,
from dense.modeling import DenseModel
from dense.trainer import DenseTrainer as Trainer
...
model = DenseModel.build(
model_args,
data_args,
training_args,
config=config,
cache_dir=model_args.cache_dir,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=collator,
)
...
trainer.train()
To encode, call the dense.driver.encode
module. For large corpus, split the corpus into shards to parallelize.
for s in shard1 shar2 shard3
do
python -m dense.driver.encode \
--output_dir=$OUTDIR \
--tokenizer_name $TOK \
--config_name $CONFIG \
--model_name_or_path $MODEL_DIR \
--fp16 \
--per_device_eval_batch_size 128 \
--encode_in_path $CORPUS_DIR/$s.json \
--encoded_save_path $ENCODE_DIR/$s.pt
done
Call the dense.faiss_retriever
module,
python -m dense.faiss_retriever \
--query_reps $ENCODE_QRY_DIR/qry.pt \
--passage_reps $ENCODE_DIR/'*.pt' \
--depth $DEPTH \
--batch_size -1 \
--save_text \
--save_ranking_to rank.tsv
Encoded corpus or corpus shards are loaded based on glob pattern matching of argument --passage_reps
. Argument --batch_size
controls number of queries passed to the FAISS index each search call and -1
will pass all queries in one call. Larger batches typically run faster (due to better memory access patterns and hardware utilization.) Setting flag --save_text
will save the ranking to a tsv file with each line being qid pid score
.
Alternatively paralleize search over the shards,
for s in shard1 shar2 shard3
do
python -m dense.faiss_retriever \
--query_reps $ENCODE_QRY_DIR/qry.pt \
--passage_reps $ENCODE_DIR/$s.pt \
--depth $DEPTH \
--save_ranking_to $INTERMEDIATE_DIR/$s
done
Then combine the results using the reducer module,
python -m dense.faiss_retriever.reducer \
--score_dir $INTERMEDIATE_DIR \
--query $ENCODE_QRY_DIR/qry.pt \
--save_ranking_to rank.txt