forked from xuewujiao/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Paddle Inference] Add add onehot trt converter (PaddlePaddle#48655)
* add onehot trt converter * add unitest * fix bug * opt code * fix bug * fix depth_tensor * fix unitest * fix bug * fix unitest * fix bug * fix bug * fix bug * fix bug
- Loading branch information
Showing
5 changed files
with
306 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
class Scope; | ||
|
||
namespace proto { | ||
class OpDesc; | ||
} // namespace proto | ||
} // namespace framework | ||
} // namespace paddle | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
|
||
/* | ||
* OneHot Op | ||
*/ | ||
class OneHotOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, | ||
bool test_mode) override { | ||
#if IS_TRT_VERSION_GE(8510) | ||
VLOG(3) << "convert a fluid one_hot op to tensorrt one_hot layer"; | ||
framework::OpDesc op_desc(op, nullptr); | ||
|
||
const auto indices_tensor = engine_->GetITensor(op_desc.Input("X").front()); | ||
nvinfer1::ITensor* values_tensor; | ||
nvinfer1::ITensor* depth_tensor; | ||
const int dtype = PADDLE_GET_CONST(int, op_desc.GetAttr("dtype")); | ||
if (dtype == 2 || dtype == 3) { // int, int64 | ||
const std::vector<int> values_data = {0, 1}; | ||
values_tensor = Add1DConstantLayer<int>(values_data, "values_tensor"); | ||
if (dtype == 3) { // int64 | ||
VLOG(3) << "trt not support int64, so it is converted to int32."; | ||
} | ||
} else if (dtype == 5 || dtype == 6) { // float | ||
const std::vector<float> values_data = {0.0f, 1.0f}; | ||
values_tensor = Add1DConstantLayer<float>(values_data, "values_tensor"); | ||
if (dtype == 6) { // int64 | ||
VLOG(3) << "trt not support float64, so it is converted to float32."; | ||
} | ||
} | ||
|
||
auto depth_name = op_desc.Input("depth_tensor"); | ||
if (depth_name.size() == 0) { | ||
const int depth = PADDLE_GET_CONST(int, op_desc.GetAttr("depth")); | ||
depth_tensor = Add1DConstantLayer<int>(depth, "depth_tensor", true); | ||
} else { | ||
nvinfer1::Dims depth_dims; | ||
depth_dims.nbDims = 0; | ||
nvinfer1::ITensor* depth_tensor_paddle = | ||
engine_->GetITensor(depth_name.front()); | ||
auto shuffle_layer = | ||
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *depth_tensor_paddle); | ||
shuffle_layer->setReshapeDimensions(depth_dims); | ||
shuffle_layer->getOutput(0)->setName(depth_tensor_paddle->getName()); | ||
depth_tensor = shuffle_layer->getOutput(0); | ||
} | ||
auto layer = TRT_ENGINE_ADD_LAYER( | ||
engine_, OneHot, *indices_tensor, *values_tensor, *depth_tensor, -1); | ||
|
||
auto output_name = op_desc.Output("Out").front(); | ||
RreplenishLayerAndOutput(layer, "one_hot", {output_name}, test_mode); | ||
#else | ||
VLOG(3) << "one_hot is not supported when TensorRT < 8.5.1"; | ||
#endif | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(one_hot, OneHotOpConverter); | ||
REGISTER_TRT_OP_CONVERTER(one_hot_v2, OneHotOpConverter); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
168 changes: 168 additions & 0 deletions
168
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_one_hot.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
from functools import partial | ||
from typing import List | ||
|
||
import numpy as np | ||
from program_config import ProgramConfig, TensorConfig | ||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest | ||
|
||
import paddle.inference as paddle_infer | ||
|
||
|
||
class TrtConvertOneHotTest(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
ver = paddle_infer.get_trt_compile_version() | ||
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 8510: | ||
return False | ||
return True | ||
|
||
def sample_program_configs(self): | ||
self.trt_param.workspace_size = 1073741824 | ||
|
||
def generate_indices(dims, batch): | ||
if dims == 2: | ||
return np.random.randint(0, 10, (batch, 4), dtype=np.int32) | ||
elif dims == 3: | ||
return np.random.randint(0, 10, (batch, 4, 6), dtype=np.int32) | ||
else: | ||
return np.random.randint( | ||
0, 10, (batch, 4, 6, 8), dtype=np.int32 | ||
) | ||
|
||
def generate_depth(dims, batch): | ||
return np.ones((1,), dtype=np.int32) * 10 | ||
|
||
for dims in [2, 3, 4]: | ||
for batch in [1, 2]: | ||
self.dims = dims | ||
dics = [{"dtype": 5, "depth": 10}, {}] | ||
ops_config = [ | ||
{ | ||
"op_type": "one_hot", | ||
"op_inputs": { | ||
"X": ["input_x_data"], | ||
"depth_tensor": ["input_depth_data"], | ||
}, | ||
"op_outputs": {"Out": ["output_data"]}, | ||
"op_attrs": dics[0], | ||
"outputs_dtype": {"output_data": np.int}, | ||
}, | ||
] | ||
ops = self.generate_op_config(ops_config) | ||
|
||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={ | ||
"depth_tensor": TensorConfig( | ||
data_gen=partial(generate_depth, dims, batch) | ||
), | ||
}, | ||
inputs={ | ||
"indices_tensor": TensorConfig( | ||
data_gen=partial(generate_indices, dims, batch) | ||
), | ||
}, | ||
outputs=["output_data"], | ||
) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config | ||
) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
if self.dims == 1: | ||
self.dynamic_shape.min_input_shape = { | ||
"input_x_data": [1], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_x_data": [2], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"input_x_data": [1], | ||
} | ||
elif self.dims == 2: | ||
self.dynamic_shape.min_input_shape = { | ||
"input_x_data": [1, 4], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_x_data": [2, 4], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"input_x_data": [1, 4], | ||
} | ||
elif self.dims == 3: | ||
self.dynamic_shape.min_input_shape = { | ||
"input_x_data": [1, 4, 6], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_x_data": [2, 4, 6], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"input_x_data": [1, 4, 6], | ||
} | ||
elif self.dims == 4: | ||
self.dynamic_shape.min_input_shape = { | ||
"input_x_data": [1, 4, 6, 8], | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_x_data": [2, 4, 6, 8], | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"input_x_data": [1, 4, 6, 8], | ||
} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
if not dynamic_shape: | ||
return 0, 3 | ||
return 1, 2 | ||
|
||
attrs = [op.attrs for op in program_config.ops] | ||
|
||
# for static_shape | ||
clear_dynamic_shape() | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False | ||
), 1e-5 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-5 | ||
|
||
def test(self): | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |