Use this package to add AIProxy support to your iOS and macOS apps. AIProxy lets you depend on AI APIs safely without building your own backend. Five levels of security are applied to keep your API key secure and your AI bill predictable:
- Certificate pinning
- DeviceCheck verification
- Split key encryption
- Per user rate limits
- Per IP rate limits
-
From within your Xcode project, select
File > Add Package Dependencies
-
Punch
github.com/lzell/aiproxyswift
into the package URL bar, and select the 'main' branch as the dependency rule. Alternatively, you can choose specific releases if you'd like to have finer control of when your dependency gets updated. -
Add an
AIPROXY_DEVICE_CHECK_BYPASS
env variable to Xcode. This token is provided to you in the AIProxy developer dashboard, and is necessary for the iOS simulator to communicate with the AIProxy backend.-
Type
cmd shift ,
to open up the "Edit Schemes" menu (orProduct > Scheme > Edit Scheme
) -
Select
Run
in the sidebar -
Select
Arguments
from the top nav -
Add to the "Environment Variables" section an env variable with name
AIPROXY_DEVICE_CHECK_BYPASS
and value that we provided you in the AIProxy dashboard
-
The AIPROXY_DEVICE_CHECK_BYPASS
is intended for the simulator only. Do not let it leak into
a distribution build of your app (including a TestFlight distribution). If you follow the steps above,
then the constant won't leak because env variables are not packaged into the app bundle.
See the FAQ for more details on the DeviceCheck bypass constant.
-
If you set the dependency rule to
main
in step 2 above, then you can ensure the package is up to date by right clicking on the package and selecting 'Update Package' -
If you selected a version-based rule, inspect the rule in the 'Package Dependencies' section of your project settings:
Once the rule is set to include the release version that you'd like to bring in, Xcode should update the package automatically. If it does not, right click on the package in the project tree and select 'Update Package'.
Along with the snippets below, which you can copy and paste into your Xcode project, we also offer full demo apps to jump-start your development. Please see the AIProxyBootstrap repo.
- OpenAI
- Gemini
- Anthropic
- Stability AI
- DeepL
- Together AI
- Replicate
- ElevenLabs
- Fal
- Groq
- Perplexity
- Mistral
- Advanced Settings
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await openAIService.chatCompletionRequest(body: .init(
model: "gpt-4o",
messages: [.system(content: .text("hello world"))]
))
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create OpenAI chat completion: \(error.localizedDescription)")
}
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
let requestBody = OpenAIChatCompletionRequestBody(
model: "gpt-4o-mini",
messages: [.user(content: .text("hello world"))]
)
do {
let stream = try await openAIService.streamingChatCompletionRequest(body: requestBody)
for try await chunk in stream {
print(chunk.choices.first?.delta.content ?? "")
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create OpenAI streaming chat completion: \(error.localizedDescription)")
}
On macOS, use NSImage(named:)
in place of UIImage(named:)
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
guard let image = UIImage(named: "myImage") else {
print("Could not find an image named 'myImage' in your app assets")
return
}
guard let imageURL = AIProxy.encodeImageAsURL(image: image, compressionQuality: 0.8) else {
print("Could not convert image to OpenAI's imageURL format")
return
}
do {
let response = try await openAIService.chatCompletionRequest(body: .init(
model: "gpt-4o",
messages: [
.system(
content: .text("Tell me what you see")
),
.user(
content: .parts(
[
.text("What do you see?"),
.imageURL(imageURL, detail: .auto)
]
)
)
]
))
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create OpenAI multi-modal chat completion: \(error.localizedDescription)")
}
This snippet will print out the URL of an image generated with dall-e-3
:
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = OpenAICreateImageRequestBody(
prompt: "a skier",
model: "dall-e-3"
)
let response = try await openAIService.createImageRequest(body: requestBody)
print(response.data.first?.url ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not generate an image with OpenAI's DALLE: \(error.localizedDescription)")
}
Use responseFormat
and specify in the prompt that OpenAI should return JSON only:
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = OpenAIChatCompletionRequestBody(
model: "gpt-4o",
messages: [
.system(content: .text("Return valid JSON only")),
.user(content: .text("Return alice and bob in a list of names"))
],
responseFormat: .jsonObject
)
let response = try await openAIService.chatCompletionRequest(body: requestBody)
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create OpenAI chat completion in JSON mode: \(error.localizedDescription)")
}
This example prompts chatGPT to construct a color palette and conform to a strict JSON schema in its response:
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let schema: [String: AIProxyJSONValue] = [
"type": "object",
"properties": [
"colors": [
"type": "array",
"items": [
"type": "object",
"properties": [
"name": [
"type": "string",
"description": "A descriptive name to give the color"
],
"hex_code": [
"type": "string",
"description": "The hex code of the color"
]
],
"required": ["name", "hex_code"],
"additionalProperties": false
]
]
],
"required": ["colors"],
"additionalProperties": false
]
let requestBody = OpenAIChatCompletionRequestBody(
model: "gpt-4o-2024-08-06",
messages: [
.system(content: .text("Return valid JSON only")),
.user(content: .text("Return a peaches and cream color palette"))
],
responseFormat: .jsonSchema(
name: "palette_creator",
description: "A list of colors that make up a color pallete",
schema: schema,
strict: true
)
)
let response = try await openAIService.chatCompletionRequest(body: requestBody)
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create OpenAI chat completion with structured outputs: \(error.localizedDescription)")
}
This example is taken from the structured outputs announcement: https://openai.com/index/introducing-structured-outputs-in-the-api/
It asks ChatGPT to call a function with the correct arguments to look up a business's unfulfilled orders:
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let schema: [String: AIProxyJSONValue] = [
"type": "object",
"properties": [
"location": [
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
],
"unit": [
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature. If not specified in the prompt, always default to fahrenheit",
"default": "fahrenheit"
]
],
"required": ["location", "unit"],
"additionalProperties": false
]
let requestBody = OpenAIChatCompletionRequestBody(
model: "gpt-4o-2024-08-06",
messages: [
.user(content: .text("How cold is it today in SF?"))
],
tools: [
.function(
name: "get_weather",
description: "Call this when the user wants the weather",
parameters: schema,
strict: true)
]
)
let response = try await openAIService.chatCompletionRequest(body: requestBody)
if let toolCall = response.choices.first?.message.toolCalls?.first {
let functionName = toolCall.function.name
let arguments = toolCall.function.arguments ?? [:]
print("ChatGPT wants us to call function \(functionName) with arguments: \(arguments)")
} else {
print("Could not get function arguments")
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not make an OpenAI structured output tool call: \(error.localizedDescription)")
}
-
Record an audio file in quicktime and save it as "helloworld.m4a"
-
Add the audio file to your Xcode project. Make sure it's included in your target: select your audio file in the project tree, type
cmd-opt-0
to open the inspect panel, and viewTarget Membership
-
Run this snippet:
import AIProxy let openAIService = AIProxy.openAIService( partialKey: "partial-key-from-your-developer-dashboard", serviceURL: "service-url-from-your-developer-dashboard" ) do { let url = Bundle.main.url(forResource: "helloworld", withExtension: "m4a")! let requestBody = OpenAICreateTranscriptionRequestBody( file: try Data(contentsOf: url), model: "whisper-1", responseFormat: "verbose_json", timestampGranularities: [.word, .segment] ) let response = try await openAIService.createTranscriptionRequest(body: requestBody) if let words = response.words { for word in words { print("\(word.word) from \(word.start) to \(word.end)") } } } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) { print("Received \(statusCode) status code with response body: \(responseBody)") } catch { print("Could not get word-level timestamps from OpenAI: \(error.localizedDescription)") }
```swift
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = OpenAITextToSpeechRequestBody(
input: "Hello world",
voice: .nova
)
let mpegData = try await openAIService.createTextToSpeechRequest(body: requestBody)
// Do not use a local `let` or `var` for AVAudioPlayer.
// You need the lifecycle of the player to live beyond the scope of this function.
// Instead, use file scope or set the player as a member of a reference type with long life.
// For example, at the top of this file you may define:
//
// fileprivate var audioPlayer: AVAudioPlayer? = nil
//
// And then use the code below to play the TTS result:
audioPlayer = try AVAudioPlayer(data: mpegData)
audioPlayer?.prepareToPlay()
audioPlayer?.play()
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create OpenAI TTS audio: \(error.localizedDescription)")
}
```
You can use all of the OpenAI snippets aboves with one change. Initialize the OpenAI service with:
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard",
requestFormat: .azureDeployment(apiVersion: "2024-06-01")
)
import AIProxy
let geminiService = AIProxy.geminiService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = GeminiGenerateContentRequestBody(
model: "gemini-1.5-flash",
contents: [
.init(
parts: [.text("Tell me a joke")]
)
]
)
let response = try await geminiService.generateContentRequest(body: requestBody)
for part in response.candidates?.first?.content?.parts ?? [] {
switch part {
case .text(let text):
print("Gemini sent: \(text)")
}
}
if let usage = response.usageMetadata {
print(
"""
Used:
\(usage.promptTokenCount ?? 0) prompt tokens
\(usage.cachedContentTokenCount ?? 0) cached tokens
\(usage.candidatesTokenCount ?? 0) candidate tokens
\(usage.totalTokenCount ?? 0) total tokens
"""
)
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create Gemini generate content request: \(error.localizedDescription)")
}
Add a file called helloworld.m4a
to your Xcode assets before running this sample snippet:
import AIProxy
let geminiService = AIProxy.geminiService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
guard let url = Bundle.main.url(forResource: "helloworld", withExtension: "m4a") else {
print("Could not find an audio file named helloworld.m4a in your app bundle")
return
}
do {
let requestBody = GeminiGenerateContentRequestBody(
model: "gemini-1.5-flash",
contents: [
.init(
parts: [
.text("""
Can you transcribe this interview, in the format of timecode, speaker, caption?
Use speaker A, speaker B, etc. to identify speakers.
"""),
.inline(data: try Data(contentsOf: url), mimeType: "audio/mp4")
]
)
]
)
let response = try await geminiService.generateContentRequest(body: requestBody)
for part in response.candidates?.first?.content?.parts ?? [] {
switch part {
case .text(let text):
print("Gemini transcript: \(text)")
}
}
if let usage = response.usageMetadata {
print(
"""
Used:
\(usage.promptTokenCount ?? 0) prompt tokens
\(usage.cachedContentTokenCount ?? 0) cached tokens
\(usage.candidatesTokenCount ?? 0) candidate tokens
\(usage.totalTokenCount ?? 0) total tokens
"""
)
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create Gemini transcription request: \(error.localizedDescription)")
}
Add a file called 'my-image.jpg' to Xcode app assets. Then run this snippet:
import AIProxy
let geminiService = AIProxy.geminiService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
guard let image = NSImage(named: "my-image") else {
print("Could not find an image named 'my-image' in your app assets")
return
}
guard let jpegData = AIProxy.encodeImageAsJpeg(image: image, compressionQuality: 0.8) else {
print("Could not encode image as Jpeg")
return
}
do {
let requestBody = GeminiGenerateContentRequestBody(
model: "gemini-1.5-flash",
contents: [
.init(
parts: [
.text("What do you see?"),
.inline(
data: jpegData,
mimeType: "image/jpeg"
)
]
)
],
safetySettings: [
.init(category: .dangerousContent, threshold: .none),
.init(category: .civicIntegrity, threshold: .none),
.init(category: .harassment, threshold: .none),
.init(category: .hateSpeech, threshold: .none),
.init(category: .sexuallyExplicit, threshold: .none)
]
)
let response = try await geminiService.generateContentRequest(body: requestBody)
for part in response.candidates?.first?.content?.parts ?? [] {
switch part {
case .text(let text):
print("Gemini sees: \(text)")
}
}
if let usage = response.usageMetadata {
print(
"""
Used:
\(usage.promptTokenCount ?? 0) prompt tokens
\(usage.cachedContentTokenCount ?? 0) cached tokens
\(usage.candidatesTokenCount ?? 0) candidate tokens
\(usage.totalTokenCount ?? 0) total tokens
"""
)
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not use image as input to Gemini: \(error.localizedDescription)")
}
Add a file called my-movie.mov
to your Xcode assets before running this sample snippet.
If you use a file like my-movie.mp4
, change the mime type from video/quicktime
to video/mp4
in the snippet below.
import AIProxy
let geminiService = AIProxy.geminiService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
// Try to upload the zip file in Xcode assets
// Get the images to train with:
guard let movieAsset = NSDataAsset(name: "my-movie") else {
print("""
Drop my-movie.mov into Assets first.
""")
return
}
do {
let geminiFile = try await geminiService.uploadFile(
fileData: movieAsset.data,
mimeType: "video/quicktime"
)
print("""
Video file uploaded to Gemini's media storage.
It will be available for 48 hours.
Find it at \(geminiFile.uri.absoluteString)
""")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not upload file to Gemini: \(error.localizedDescription)")
}
Use the file URL returned from the snippet above.
import AIProxy
let fileURL = URL(string: "url-from-snippet-above")!
let geminiService = AIProxy.geminiService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = GeminiGenerateContentRequestBody(
model: "gemini-1.5-flash",
contents: [
.init(
parts: [
.text("Dump the text content in markdown from this video"),
.file(
url: fileURL,
mimeType: "video/quicktime"
)
]
)
],
safetySettings: [
.init(category: .dangerousContent, threshold: .none),
.init(category: .civicIntegrity, threshold: .none),
.init(category: .harassment, threshold: .none),
.init(category: .hateSpeech, threshold: .none),
.init(category: .sexuallyExplicit, threshold: .none)
]
)
let response = try await geminiService.generateContentRequest(body: requestBody)
for part in response.candidates?.first?.content?.parts ?? [] {
switch part {
case .text(let text):
print("Gemini transcript: \(text)")
}
}
if let usage = response.usageMetadata {
print(
"""
Used:
\(usage.promptTokenCount ?? 0) prompt tokens
\(usage.cachedContentTokenCount ?? 0) cached tokens
\(usage.candidatesTokenCount ?? 0) candidate tokens
\(usage.totalTokenCount ?? 0) total tokens
"""
)
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create Gemini vision request: \(error.localizedDescription)")
}
import AIProxy
let fileURL = URL(string: "url-from-snippet-above")!
let geminiService = AIProxy.geminiService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
try await geminiService.deleteFile(fileURL: fileURL)
print("File deleted from \(fileURL.absoluteString)")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not delete file from Gemini temporary storage: \(error.localizedDescription)")
}
import AIProxy
let anthropicService = AIProxy.anthropicService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await anthropicService.messageRequest(body: AnthropicMessageRequestBody(
maxTokens: 1024,
messages: [
AnthropicInputMessage(content: [.text("hello world")], role: .user)
],
model: "claude-3-5-sonnet-20240620"
))
for content in response.content {
switch content {
case .text(let message):
print("Claude sent a message: \(message)")
case .toolUse(id: _, name: let toolName, input: let toolInput):
print("Claude used a tool \(toolName) with input: \(toolInput)")
}
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create an Anthropic message: \(error.localizedDescription)")
}
import AIProxy
let anthropicService = AIProxy.anthropicService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = AnthropicMessageRequestBody(
maxTokens: 1024,
messages: [
.init(
content: [.text("hello world")],
role: .user
)
],
model: "claude-3-5-sonnet-20240620"
)
let stream = try await anthropicService.streamingMessageRequest(body: requestBody)
for try await chunk in stream {
switch chunk {
case .text(let text):
print(text)
case .toolUse(name: let toolName, input: let toolInput):
print("Claude wants to call tool \(toolName) with input \(toolInput)")
}
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not use Anthropic's message stream: \(error.localizedDescription)")
}
import AIProxy
let anthropicService = AIProxy.anthropicService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = AnthropicMessageRequestBody(
maxTokens: 1024,
messages: [
.init(
content: [.text("What is nvidia's stock price?")],
role: .user
)
],
model: "claude-3-5-sonnet-20240620",
tools: [
.init(
description: "Call this function when the user wants a stock symbol",
inputSchema: [
"type": "object",
"properties": [
"ticker": [
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
]
],
"required": ["ticker"]
],
name: "get_stock_symbol"
)
]
)
let stream = try await anthropicService.streamingMessageRequest(body: requestBody)
for try await chunk in stream {
switch chunk {
case .text(let text):
print(text)
case .toolUse(name: let toolName, input: let toolInput):
print("Claude wants to call tool \(toolName) with input \(toolInput)")
}
}
print("Done with stream")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print(error.localizedDescription)
}
Use UIImage
in place of NSImage
for iOS apps:
import AIProxy
guard let image = NSImage(named: "marina") else {
print("Could not find an image named 'marina' in your app assets")
return
}
guard let jpegData = AIProxy.encodeImageAsJpeg(image: image, compressionQuality: 0.8) else {
print("Could not convert image to jpeg")
return
}
let anthropicService = AIProxy.anthropicService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await anthropicService.messageRequest(body: AnthropicMessageRequestBody(
maxTokens: 1024,
messages: [
AnthropicInputMessage(content: [
.text("Provide a very short description of this image"),
.image(mediaType: .jpeg, data: jpegData.base64EncodedString())
], role: .user)
],
model: "claude-3-5-sonnet-20240620"
))
for content in response.content {
switch content {
case .text(let message):
print("Claude sent a message: \(message)")
case .toolUse(id: _, name: let toolName, input: let toolInput):
print("Claude used a tool \(toolName) with input: \(toolInput)")
}
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not send a multi-modal message to Anthropic: \(error.localizedDescription)")
}
import AIProxy
let anthropicService = AIProxy.anthropicService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = AnthropicMessageRequestBody(
maxTokens: 1024,
messages: [
.init(
content: [.text("What is nvidia's stock price?")],
role: .user
)
],
model: "claude-3-5-sonnet-20240620",
tools: [
.init(
description: "Call this function when the user wants a stock symbol",
inputSchema: [
"type": "object",
"properties": [
"ticker": [
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
]
],
"required": ["ticker"]
],
name: "get_stock_symbol"
)
]
)
let response = try await anthropicService.messageRequest(body: requestBody)
for content in response.content {
switch content {
case .text(let message):
print("Claude sent a message: \(message)")
case .toolUse(id: _, name: let toolName, input: let toolInput):
print("Claude used a tool \(toolName) with input: \(toolInput)")
}
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create Anthropic message with tool call: \(error.localizedDescription)")
}
In the snippet below, replace NSImage with UIImage if you are building on iOS. For a SwiftUI example, see this gist
import AIProxy
let service = AIProxy.stabilityAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let body = StabilityAIUltraRequestBody(prompt: "Lighthouse on a cliff overlooking the ocean")
let response = try await service.ultraRequest(body: body)
let image = NSImage(data: response.imageData)
// Do something with `image`
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not generate an image with StabilityAI: \(error.localizedDescription)")
}
import AIProxy
let service = AIProxy.deepLService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let body = DeepLTranslateRequestBody(targetLang: "ES", text: ["hello world"])
let response = try await service.translateRequest(body: body)
// Do something with `response.translations`
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create DeepL translation: \(error.localizedDescription)")
}
See the TogetherAI model list for available
options to pass as the model
argument:
import AIProxy
let togetherAIService = AIProxy.togetherAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = TogetherAIChatCompletionRequestBody(
messages: [TogetherAIMessage(content: "Hello world", role: .user)],
model: "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
)
let response = try await togetherAIService.chatCompletionRequest(body: requestBody)
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create TogetherAI chat completion: \(error.localizedDescription)")
}
See the TogetherAI model list for available
options to pass as the model
argument:
import AIProxy
let togetherAIService = AIProxy.togetherAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let requestBody = TogetherAIChatCompletionRequestBody(
messages: [TogetherAIMessage(content: "Hello world", role: .user)],
model: "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
)
let stream = try await togetherAIService.streamingChatCompletionRequest(body: requestBody)
for try await chunk in stream {
print(chunk.choices.first?.delta.content ?? "")
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create TogetherAI streaming chat completion: \(error.localizedDescription)")
}
JSON mode is handy for enforcing that the model returns JSON in a structure that your
application expects. You specify the contract using schema
below. Note that only some models
support JSON mode. See this guide for a list.
import AIProxy
let togetherAIService = AIProxy.togetherAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let schema: [String: AIProxyJSONValue] = [
"type": "object",
"properties": [
"colors": [
"type": "array",
"items": [
"type": "object",
"properties": [
"name": [
"type": "string",
"description": "A descriptive name to give the color"
],
"hex_code": [
"type": "string",
"description": "The hex code of the color"
]
],
"required": ["name", "hex_code"],
"additionalProperties": false
]
]
],
"required": ["colors"],
"additionalProperties": false
]
let requestBody = TogetherAIChatCompletionRequestBody(
messages: [
TogetherAIMessage(
content: "You are a helpful assistant that answers in JSON",
role: .system
),
TogetherAIMessage(
content: "Create a peaches and cream color palette",
role: .user
)
],
model: "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
responseFormat: .json(schema: schema)
)
let response = try await togetherAIService.chatCompletionRequest(body: requestBody)
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create TogetherAI JSON chat completion: \(error.localizedDescription)")
}
This example is a Swift port of this guide:
import AIProxy
let togetherAIService = AIProxy.togetherAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let function = TogetherAIFunction(
description: "Call this when the user wants the weather",
name: "get_weather",
parameters: [
"type": "object",
"properties": [
"location": [
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
],
"num_days": [
"type": "integer",
"description": "The number of days to get the forecast for",
],
],
"required": ["location", "num_days"],
]
)
let toolPrompt = """
You have access to the following functions:
Use the function '\(function.name)' to '\(function.description)':
\(try function.serialize())
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{{\"example_name\": \"example_value\"}}</function>
Reminder:
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls
"""
let requestBody = TogetherAIChatCompletionRequestBody(
messages: [
TogetherAIMessage(
content: toolPrompt,
role: .system
),
TogetherAIMessage(
content: "What's the weather like in Tokyo over the next few days?",
role: .user
)
],
model: "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
temperature: 0,
tools: [
TogetherAITool(function: function)
]
)
let response = try await togetherAIService.chatCompletionRequest(body: requestBody)
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create TogetherAI llama 3.1 tool completion: \(error.localizedDescription)")
}
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let input = ReplicateFluxSchnellInputSchema(
prompt: "Monument valley, Utah"
)
let output = try await replicateService.createFluxSchnellImageURLs(
input: input
)
print("Done creating Flux-Schnell image: ", output.first ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create Flux-Schnell image: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing ReplicateFluxSchnellInputSchema.swift
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let input = ReplicateFluxDevInputSchema(
prompt: "Monument valley, Utah. High res"
)
let output = try await replicateService.createFluxDevImageURLs(
input: input
)
print("Done creating Flux-Dev image: ", output.first ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create Flux-Dev image: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing ReplicateFluxDevInputSchema.swift
This snippet generates a version 1.1 image. If you would like to generate version 1, make the following substitutions:
-
ReplicateFluxProInputSchema_v1_1
->ReplicateFluxProInputSchema
-
createFluxProImage_v1_1
->createFluxProImage
import AIProxy let replicateService = AIProxy.replicateService( partialKey: "partial-key-from-your-developer-dashboard", serviceURL: "service-url-from-your-developer-dashboard" ) do { let input = ReplicateFluxProInputSchema_v1_1( prompt: "Monument valley, Utah. High res" ) let output = try await replicateService.createFluxProImageURL_v1_1( input: input ) print("Done creating Flux-Pro image: ", output) } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) { print("Received \(statusCode) status code with response body: \(responseBody)") } catch { print("Could not create Flux-Pro image: \(error.localizedDescription)") }
See the full range of controls for generating an image by viewing ReplicateFluxProInputSchema_v1_1.swift
On macOS, use NSImage(named:)
in place of UIImage(named:)
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
guard let image = UIImage(named: "face") else {
print("Could not find an image named 'face' in your app assets")
return
}
guard let imageURL = AIProxy.encodeImageAsURL(image: image, compressionQuality: 0.8) else {
print("Could not convert image to a local data URI")
return
}
do {
let input = ReplicateFluxPulidInputSchema(
mainFaceImage: imageURL,
prompt: "smiling man holding sign with glowing green text 'PuLID for FLUX'",
numOutputs: 1,
startStep: 4
)
let output = try await replicateService.createFluxPulidImage(
input: input
)
print("Done creating Flux-PuLID image: ", output)
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create Flux-Pulid images: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing ReplicateFluxPulidInputSchema.swift
There are many controls to play with for this use case. Please see
ReplicateFluxDevControlNetInputSchema.swift
for the full range of controls.
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let input = ReplicateFluxDevControlNetInputSchema(
controlImage: URL(string: "https://example.com/your/image")!,
prompt: "a cyberpunk with natural greys and whites and browns",
controlStrength: 0.4
)
let output = try await replicateService.createFluxDevControlNetImage(
input: input
)
print("Done creating Flux-ControlNet image: ", output)
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create Flux-ControlNet image: \(error.localizedDescription)")
}
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let input = ReplicateSDXLInputSchema(
prompt: "Monument valley, Utah"
)
let urls = try await replicateService.createSDXLImageURLs(
input: input
)
print("Done creating SDXL image: ", urls.first ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create SDXL image: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing ReplicateSDXLInputSchema.swift
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let input = ReplicateSDXLFreshInkInputSchema(
prompt: "A fresh ink TOK tattoo of monument valley, Utah",
negativePrompt: "ugly, broken, distorted"
)
let urls = try await replicateService.createSDXLFreshInkImageURLs(
input: input
)
print("Done creating SDXL fresh ink image: ", urls.first ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create SDXL fresh ink image: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing ReplicateSDXLFreshInkInputSchema.swift
-
Generate the Encodable representation of your input schema. You can use input schemas in this library as inspiration. Take a look at
ReplicateFluxProInputSchema.swift
as inspiration. Find the schema format that you should conform to using replicate's web dashboard and tapping throughYour Model > API > Schema > Input Schema
-
Generate the Decodable representation of your output schema. The output schema is defined on replicate's site at
Your Model > API > Schema > Output Schema
. For simple cases, a typealias will do (for example, if the output schema is just a string or an array of strings). Look atReplicateFluxOutputSchema.swift
for inspiration. If you need help doing this, please reach out. -
Call the
createPrediction
method, followed bypollForPredictionOutput
method. Note that you'll need to changeYourInputSchema
,YourOutputSchema
andyour-model-version
in this snippet:import AIProxy let replicateService = AIProxy.replicateService( partialKey: "partial-key-from-your-developer-dashboard", serviceURL: "service-url-from-your-developer-dashboard" ) do { let input = YourInputSchema( prompt: "Monument valley, Utah" ) let predictionResponse = try await replicateService.createPrediction( version: "your-model-version", input: input, output: ReplicatePredictionResponseBody<YourOutputSchema>.self ) let predictionOutput: YourOutputSchema = try await replicateService.pollForPredictionOutput( predictionResponse: predictionResponse, pollAttempts: 30 ) print("Done creating predictionOutput") } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) { print("Received \(statusCode) status code with response body: \(responseBody)") } catch { print("Could not create replicate prediction: \(error.localizedDescription)") }
Replace <your-account>
:
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let modelURL = try await replicateService.createModel(owner: "<your-account>", name: "my-model", description: "My great model")
print("Your model is at \(modelURL)")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create replicate model: \(error.localizedDescription)")
}
Create a zip file called training.zip
and drop it in your Xcode assets.
See the "Prepare your training data" section of this guide
for tips on what to include in the zip file. Then run:
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
guard let trainingData = NSDataAsset(name: "training") else {
print("""
Drop training.zip file into Assets first.
See the 'Prepare your training data' of this guide:
https://replicate.com/blog/fine-tune-flux
""")
return
}
do {
let fileUploadResponse = try await replicateService.uploadTrainingZipFile(
zipData: trainingData.data,
name: "training.zip"
)
print("""
Training file uploaded. Find it at \(fileUploadResponse.urls.get)
You you can train with this file until \(fileUploadResponse.expiresAt ?? "")
""")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not upload file to replicate: \(error.localizedDescription)")
}
Use the <training-url>
returned from the snippet above.
Use the <model-name>
that you used from the snippet above that.
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
// You should experiment with the settings in `ReplicateFluxTrainingInput.swift` to
// find what works best for your use case.
//
// The `layersToOptimizeRegex` argument here speeds training and works well for faces.
// You could could optionally remove that argument to see if the final trained model
// works better for your user case.
let trainingInput = ReplicateFluxTrainingInput(
inputImages: URL(string: "<training-url>")!,
layersToOptimizeRegex: "transformer.single_transformer_blocks.(7|12|16|20).proj_out",
steps: 200,
triggerWord: "face"
)
let reqBody = ReplicateTrainingRequestBody(destination: "<model-owner>/<model-name>", input: trainingInput)
// Find valid version numbers here: https://replicate.com/ostris/flux-dev-lora-trainer/train
let training = try await replicateService.createTraining(
modelOwner: "ostris",
modelName: "flux-dev-lora-trainer",
versionID: "d995297071a44dcb72244e6c19462111649ec86a9646c32df56daa7f14801944",
body: reqBody
)
print("Get training status at: \(training.urls?.get?.absoluteString ?? "unknown")")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create replicate training: \(error.localizedDescription)")
}
Use the <url>
that is returned from the snippet above.
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
// This URL comes from the output of the sample above
let url = URL(string: "<url>")!
do {
let training = try await replicateService.pollForTrainingComplete(
url: url,
pollAttempts: 100,
secondsBetweenPollAttempts: 10
)
print("""
Flux training status: \(training.status?.rawValue ?? "unknown")
Your model version is: \(training.output?.version ?? "unknown")
""")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not poll for the replicate training: \(error.localizedDescription)")
}
Use the <version>
string that was returned from the snippet above, but do not include the
model owner and model name in the string.
import AIProxy
let replicateService = AIProxy.replicateService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
let input = ReplicateFluxFineTuneInputSchema(
prompt: "an oil painting of my face on a blimp",
model: .dev,
numInferenceSteps: 28 // Replicate recommends around 28 steps for `.dev` and 4 for `.schnell`
)
do {
let predictionResponse = try await replicateService.createPrediction(
version: "<version>",
input: input,
output: ReplicatePredictionResponseBody<[URL]>.self
)
let predictionOutput: [URL] = try await replicateService.pollForPredictionOutput(
predictionResponse: predictionResponse,
pollAttempts: 30,
secondsBetweenPollAttempts: 5
)
print("Done creating predictionOutput: \(predictionOutput)")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create replicate prediction: \(error.localizedDescription)")
}
import AIProxy
let elevenLabsService = AIProxy.elevenLabsService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let body = ElevenLabsTTSRequestBody(
text: "Hello world"
)
let mpegData = try await elevenLabsService.ttsRequest(
voiceID: "EXAVITQu4vr4xnSDxMaL",
body: body
)
// Do not use a local `let` or `var` for AVAudioPlayer.
// You need the lifecycle of the player to live beyond the scope of this function.
// Instead, use file scope or set the player as a member of a reference type with long life.
// For example, at the top of this file you may define:
//
// fileprivate var audioPlayer: AVAudioPlayer? = nil
//
// And then use the code below to play the TTS result:
audioPlayer = try AVAudioPlayer(data: mpegData)
audioPlayer?.prepareToPlay()
audioPlayer?.play()
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print("Could not create ElevenLabs TTS audio: \(error.localizedDescription)")
}
- See the full range of TTS controls by viewing
ElevenLabsTTSRequestBody.swift
. - See https://api.elevenlabs.io/v1/voices for the IDs that you can pass to
voiceID
.
import AIProxy
let falService = AIProxy.falService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
let input = FalFastSDXLInputSchema(
prompt: "Yosemite Valley",
enableSafetyChecker: false
)
do {
let output = try await falService.createFastSDXLImage(input: input)
print("""
The first output image is at \(output.images?.first?.url?.absoluteString ?? "")
It took \(output.timings?.inference ?? Double.nan) seconds to generate.
""")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create Fal SDXL image: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing FalFastSDXLInputSchema.swift
import AIProxy
let falService = AIProxy.falService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
let input = FalRunwayGen3AlphaInputSchema(
imageUrl: "https://www.sonomacounty.com/wp-content/uploads/2023/09/activities_ballooning_Sonoma_Ballooning_Sonoma_County_900x675.png",
prompt: "A hot air balloon floating in the sky."
)
do {
let output = try await falService.createRunwayGen3AlphaVideo(input: input)
print(output.video?.url?.absoluteString ?? "No video URL")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create Fal Runway Gen3 Alpha video: \(error.localizedDescription)")
}
See the full range of controls for generating an image by viewing FalRunwayGen3AlphaInputSchema.swift
Your training data must be a zip file of images. You can either pull the zip from assets (what I do here), or construct the zip in memory:
import AIProxy
let falService = AIProxy.falService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
// Get the images to train with:
guard let trainingData = NSDataAsset(name: "training") else {
print("Drop training.zip file into Assets first")
return
}
do {
let url = try await falService.uploadTrainingZipFile(
zipData: trainingData.data,
name: "training.zip"
)
print("Training file uploaded. Find it at \(url.absoluteString)")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not upload file to Fal: \(error.localizedDescription)")
}
Using the URL returned in the step above:
let input = FalFluxLoRAFastTrainingInputSchema(
imagesDataURL: <url-from-step-above>
triggerWord: "face"
)
do {
let output = try await falService.createFluxLoRAFastTraining(input: input)
print("""
Fal's Flux LoRA fast trainer is complete.
Your weights are at: \(output.diffusersLoraFile?.url?.absoluteString ?? "")
""")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create Fal Flux training: \(error.localizedDescription)")
}
See FalFluxLoRAFastTrainingInputSchema.swift
for the full range of training controls.
Using the LoRA URL returned in the step above:
let inputSchema = FalFluxLoRAInputSchema(
prompt: "face on a blimp over Monument Valley, Utah",
loras: [
.init(
path: <lora-url-from-step-above>
scale: 0.9
)
],
numImages: 2,
outputFormat: .jpeg
)
do {
let output = try await falService.createFluxLoRAImage(input: inputSchema)
print("""
Fal's Flux LoRA inference is complete.
Your images are at: \(output.images?.compactMap {$0.url?.absoluteString} ?? [])
""")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create Fal LoRA image: \(error.localizedDescription)")
}
See FalFluxLoRAInputSchema.swift
for the full range of inference controls
import AIProxy
let groqService = AIProxy.groqService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await groqService.chatCompletionRequest(body: .init(
messages: [.assistant(content: "hello world")],
model: "mixtral-8x7b-32768"
))
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print(error.localizedDescription)
}
import AIProxy
let groqService = AIProxy.groqService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let stream = try await groqService.streamingChatCompletionRequest(body: .init(
messages: [.assistant(content: "hello world")],
model: "mixtral-8x7b-32768"
)
)
for try await chunk in stream {
print(chunk.choices.first?.delta.content ?? "")
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
print(error.localizedDescription)
}
-
Record an audio file in quicktime and save it as "helloworld.m4a"
-
Add the audio file to your Xcode project. Make sure it's included in your target: select your audio file in the project tree, type
cmd-opt-0
to open the inspect panel, and viewTarget Membership
-
Run this snippet:
import AIProxy let groqService = AIProxy.groqService( partialKey: "partial-key-from-your-developer-dashboard", serviceURL: "service-url-from-your-developer-dashboard" ) do { let url = Bundle.main.url(forResource: "helloworld", withExtension: "m4a")! let requestBody = GroqTranscriptionRequestBody( file: try Data(contentsOf: url), model: "whisper-large-v3-turbo", responseFormat: "json" ) let response = try await groqService.createTranscriptionRequest(body: requestBody) let transcript = response.text ?? "None" print("Groq transcribed: \(transcript)") } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) { print("Received non-200 status code: \(statusCode) with response body: \(responseBody)") } catch { print("Could not get audio transcription from Groq: \(error.localizedDescription)") }
import AIProxy
let perplexityService = AIProxy.perplexityService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await perplexityService.chatCompletionRequest(body: .init(
messages: [.user(content: "How many national parks in the US?")],
model: "llama-3.1-sonar-small-128k-online"
))
print(response.choices.first?.message?.content ?? "")
if let usage = response.usage {
print(
"""
Used:
\(usage.promptTokens ?? 0) prompt tokens
\(usage.completionTokens ?? 0) completion tokens
\(usage.totalTokens ?? 0) total tokens
"""
)
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create perplexity chat completion: \(error.localizedDescription)")
}
import AIProxy
let perplexityService = AIProxy.perplexityService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
let perplexityService = AIProxy.perplexityService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let stream = try await perplexityService.streamingChatCompletionRequest(body: .init(
messages: [.user(content: "How many national parks in the US?")],
model: "llama-3.1-sonar-small-128k-online"
))
for try await chunk in stream {
print(chunk.choices.first?.delta?.content ?? "")
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create perplexity streaming chat completion: \(error.localizedDescription)")
}
Use api.mistral.ai
as the proxy domain when creating your AIProxy service in the developer dashboard.
import AIProxy
let mistralService = AIProxy.mistralService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await mistralService.chatCompletionRequest(body: .init(
messages: [.user(content: "Hello world")],
model: "mistral-small-latest"
))
print(response.choices.first?.message.content ?? "")
if let usage = response.usage {
print(
"""
Used:
\(usage.promptTokens ?? 0) prompt tokens
\(usage.completionTokens ?? 0) completion tokens
\(usage.totalTokens ?? 0) total tokens
"""
)
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create mistral chat completion: \(error.localizedDescription)")
}
Use api.mistral.ai
as the proxy domain when creating your AIProxy service in the developer dashboard.
import AIProxy
let mistralService = AIProxy.mistralService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let stream = try await mistralService.streamingChatCompletionRequest(body: .init(
messages: [.user(content: "Hello world")],
model: "mistral-small-latest"
))
for try await chunk in stream {
print(chunk.choices.first?.delta.content ?? "")
if let usage = chunk.usage {
print(
"""
Used:
\(usage.promptTokens ?? 0) prompt tokens
\(usage.completionTokens ?? 0) completion tokens
\(usage.totalTokens ?? 0) total tokens
"""
)
}
}
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
print("Could not create mistral streaming chat completion: \(error.localizedDescription)")
}
This pattern is slightly different than the others, because OpenMeteo has an official lib that we'd like to rely on. To run the snippet below, you'll need to add AIProxySwift and OpenMeteoSDK to your Xcode project. Add OpenMeteoSDK:
- In Xcode, go to
File > Add Package Dependences
- Enter the package URL
https://github.com/open-meteo/sdk
- Choose your dependency rule (e.g. the
main
branch for the most up-to-date package)
Next, use AIProxySwift's core functionality to get a URLRequest and URLSession, and pass those into the OpenMeteoSDK:
import AIProxy
import OpenMeteoSdk
do {
let request = try await AIProxy.request(
partialKey: "partial-key-from-your-aiproxy-developer-dashboard",
serviceURL: "service-url-from-your-aiproxy-developer-dashboard",
proxyPath: "/v1/forecast?latitude=52.52&longitude=13.41&hourly=temperature_2m&format=flatbuffers"
)
let session = AIProxy.session()
let responses = try await WeatherApiResponse.fetch(request: request, session: session)
// Do something with `responses`. For a usage example, follow these instructions:
// 1. Navigate to https://open-meteo.com/en/docs
// 2. Scroll to the 'API response' section
// 3. Tap on Swift
// 4. Scroll to 'Usage'
print(responses)
} catch {
print("Could not fetch the weather: \(error.localizedDescription)")
}
If your app already has client or user IDs that you want to annotate AIProxy requests with, pass a second argument to the provider's service initializer. For example:
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard",
clientID: "<your-id>"
)
Requests that are made using openAIService
will be annotated on the AIProxy backend, so that
when you view top users, or the timeline of requests, your client IDs will be familiar.
If you do not have existing client or user IDs, no problem! Leave the clientID
argument
out, and we'll generate IDs for you. See AIProxyIdentifier.swift
if you would like to see
ID generation specifics.
We use Foundation's URL
types such as URLRequest
and URLSession
for all connections to
AIProxy. You can view the various errors that Foundation may raise by viewing NSURLError.h
(which is easiest to find by punching cmd-shift-o
in Xcode and searching for it).
Some errors may be more interesting to you, and worth their own error handler to pop UI for
your user. For example, to catch NSURLErrorTimedOut
, NSURLErrorNetworkConnectionLost
and
NSURLErrorNotConnectedToInternet
, you could use the following try/catch structure:
import AIProxy
let openAIService = AIProxy.openAIService(
partialKey: "partial-key-from-your-developer-dashboard",
serviceURL: "service-url-from-your-developer-dashboard"
)
do {
let response = try await openAIService.chatCompletionRequest(body: .init(
model: "gpt-4o-mini",
messages: [.assistant(content: .text("hello world"))]
))
print(response.choices.first?.message.content ?? "")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch let err as URLError where err.code == URLError.timedOut {
print("Request for OpenAI buffered chat completion timed out")
} catch let err as URLError where [.notConnectedToInternet, .networkConnectionLost].contains(err.code) {
print("Could not make buffered chat request. Please check your internet connection")
} catch {
print("Could not get buffered chat completion: \(error.localizedDescription)")
}
Occassionally, Xcode fails to automatically add the AIProxy library to your target's dependency
list. If you receive the No such module 'AIProxy'
error, first ensure that you have added
the package to Xcode using the Installation steps.
Next, select your project in the Project Navigator (cmd-1
), select your target, and scroll to
the Frameworks, Libraries, and Embedded Content
section. Tap on the plus icon:
And add the AIProxy library:
If you encounter the error
networkd_settings_read_from_file Sandbox is preventing this process from reading networkd settings file at "/Library/Preferences/com.apple.networkd.plist", please add an exception.
Modify your macOS project settings by tapping on your project in the Xcode project tree, then
select Signing & Capabilities
and enable Outgoing Connections (client)
If you use the snippets above and encounter the error
'async' call in a function that does not support concurrency
it is because we assume you are in a structured concurrency context. If you encounter this
error, you can use the escape hatch of wrapping your snippet in a Task {}
.
If you'd like to do UI testing and allow the test cases to execute real API requests, you must
set the AIPROXY_DEVICE_CHECK_BYPASS
env variable in your test plan and forward the env
variable from the test case to the host simulator (Apple does not do this by default, which I
consider a bug). Here is how to set it up:
-
Set the
AIPROXY_DEVICE_CHECK_BYPASS
env variable in your test environment: -
Important Edit your test cases to forward on the env variable to the host simulator:
func testExample() throws {
let app = XCUIApplication()
app.launchEnvironment = [
"AIPROXY_DEVICE_CHECK_BYPASS": ProcessInfo.processInfo.environment["AIPROXY_DEVICE_CHECK_BYPASS"]!
]
app.launch()
}
AIProxy uses Apple's DeviceCheck to ensure that requests received by the backend originated from your app on a legitimate Apple device. However, the iOS simulator cannot produce DeviceCheck tokens. Rather than requiring you to constantly build and run on device during development, AIProxy provides a way to skip the DeviceCheck integrity check. The token is intended for use by developers only. If an attacker gets the token, they can make requests to your AIProxy project without including a DeviceCheck token, and thus remove one level of protection.
This constant is intended to be included in the distributed version of your app. As the name implies, it is a partial representation of your OpenAI key. Specifically, it is one half of an encrypted version of your key. The other half resides on AIProxy's backend. As your app makes requests to AIProxy, the two encrypted parts are paired, decrypted, and used to fulfill the request to OpenAI.
Contributions are welcome! In order to contribute, we require that you grant AIProxy an irrevocable license to use your contributions as we see fit. Please read CONTRIBUTIONS.md for details
-
In codable representations, fields that are required by the API should be above fields that are optional. Within the two groups (required and optional) all fields should be alphabetically ordered.
-
Decodables should all have optional properties. Why? We don't want to fail decoding in live apps if the provider changes something out from under us (which can happen purposefully due to deprecations, or by accident due to bad deploys). If we use non-optionals in decodable definitions, then a provider removing a field, changing the type of a field, or removing an enum case would cause decoding to fail. You may think this isn't too bad, since the JSONDecoder throws anyway, and therefore client code will already be wrapped in a do/catch. However, we always want to give the best chance that decodable succeeds for the properties that the client actually uses. That is, if the provider changes out the enum case of a property unused by the client, we want the client application to continue functioning correctly, not to throw an error and enter the catch branch of the client's call site.
-
When a request or response object is deeply nested by the API provider, create nested structs in the same namespace as the top level object. This lib started with a flat namespace, so some structs do not follow this pattern. Going forward, though, nesting is preferred to flat. A flat namespace leads to long struct names to avoid collision between providers. Use this instead:
// An example provider response public struct ProviderResponseBody: Decodable { // An examples status public let status: Status? // ... other fields ... } extension ProviderResponseBody { public enum Status: String, Decodable { case succeeded case failed case canceled } }
This pattern avoids collisions, works well with Xcode's click to jump-to-definition, and improves source understanding for folks that use
ctrl-6
to navigate through a file. -
If you are implementing an API contract that could reuse a provider's nested structure, and it's reasonable to suppose that the two objects will change together, then pull the nested struct into its own file and give it a longer prefix. The example above would become:
// ProviderResponseBody.swift public struct ProviderResponseBody: Decodable { // An examples status public let status: ProviderStatus? // ... other fields ... } // ProviderStatus.swift public enum ProviderStatus: String, Decodable { case succeeded case failed case canceled }