Skip to content

magic-research/Dataset_Quantization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

24a2a77 · Jan 6, 2024

History

24 Commits
Aug 20, 2023
Aug 19, 2023
Aug 19, 2023
Aug 19, 2023
Jan 6, 2024
Oct 26, 2023
Aug 19, 2023
Nov 27, 2023
Aug 19, 2023
Aug 19, 2023
Aug 19, 2023
Aug 19, 2023
Aug 19, 2023
Aug 19, 2023
Aug 19, 2023
Oct 26, 2023
Aug 19, 2023

Repository files navigation

Dataset Quantization for both Vision and Language Tasks

Official implementation of "Dataset Quantization".

Dataset Quantization

Daquan Zhou*, Kai Wang*, Jianyang Gu*, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You+, Jiashi Feng+ (*Equal Contribution, +Corresponding Author)

Highlight ✨​

  • DQ is accepted by ICCV2023!
  • DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.
  • We support both vision and language dataset compression:
    • Vision tasks: with 60% data from ImageNet, the models can be trained with no performance drop including classification, semantic segmentation, and object detection.
    • Language tasks: with 20% data from Alpaca’s instruction tuning data, the models can be trained with negligible performance on BBH, DROP, MMLU, and Human-Eval.

TODO List

  • ImageNet selected indices

Getting Started

Download the repo:

git clone https://github.com/magic-research/Dataset_Quantization.git
cd Dataset_Quantization

Set up the environment:

conda create -n dq python=3.9
conda activate dq
pip install -r requirements.txt

prepare the pretrained MAE model for the image reconstruction.

wget https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_large_ganloss.pth
mv mae_visualize_vit_large_ganloss.pth ./pretrained

DQ for Image Classification

Overview

pipeline-classification

Dataset Quantization is conducted in the following steps:

  1. Dataset bin generation. Firstly we iteratively select non-overlapping dataset bins according to the submodular function.
  2. Bin sampling. Then we uniformly sample a certain portion (the required data keep ratio) from each bin and form the final compact set.
  3. Pixel quantization and reconstruction. We employ a GradCAM module to select informative image patches. By only storing the informative patches, the required storage can be further reduced. An MAE model is adopted for image reconstruction. For simplicity, here we directly conduct the reconstruction for evaluating our full method.

Data Preparation

  • Put CIFAR-10 data to ~/data_cifar.
  • Put unzipped ImageNet data to ~/data_imagenet.

Quantization

CIFAR-10

# Dataset bin generation (By default we use a bin number of 10)
CUDA_VISIBLE_DEVICES=0 python -u quantize_sample.py \
    --fraction 0.1 --dataset CIFAR10 --data_path ~/data_cifar \
    --num_exp 10 --workers 10 -se 0 --selection Submodular --model ResNet18 \
    -sp ../results/bin_cifar_010 \
    --batch 128 --submodular GraphCut --submodular_greedy NaiveGreedy --pretrained

# Bin sampling (Change the fraction parameter to obtain different data keep ratio)
CUDA_VISIBLE_DEVICES=0 python -u quantize_bin.py \
    --fraction 0.125 --dataset CIFAR10 --data_path ~/data_cifar \
    --workers 10 --selection_path ../results/bin_cifar_010/ \
    -sp ../results/sample_quantized_cifar_010

# Image reconstruction (Change the mask_ratio parameter to obtain different patch drop ratio)
CUDA_VISIBLE_DEVICES=0 python -u quantize_pixel.py \
    --data CIFAR10 --data_path ~/data_cifar \
    --output_dir ../results/pixel_quantized_cifar --model mae_vit_large_patch16 \
    --resume ./pretrained/mae_visualize_vit_large_ganloss.pth --batch_size 128 \
    --mask_ratio 0.2 --cam_mask

We have provided the selected 12.5% indices in the data/cifar10 folder, which can be directly used for evaluation.

ImageNet

# Dataset bin generation (By default we use a bin number of 10)
CUDA_VISIBLE_DEVICES=0 python -u quantize_sample.py \
    --fraction 0.1 --dataset ImageNet --data_path ~/data_imagenet \
    --num_exp 10 --workers 10 -se 0 --selection Submodular --model ViT_Base_16 \
    -sp ../results/bin_imagenet_010 \
    --batch 128 --submodular GraphCut --submodular_greedy NaiveGreedy --pretrained

# Bin sampling (Change the fraction parameter to obtain different data keep ratio)
CUDA_VISIBLE_DEVICES=0 python -u quantize_bin.py \
    --fraction 0.125 --dataset ImageNet --data_path ~/data_imagenet \
    --workers 10 --selection_path ../results/bin_imagenet_010/ \
    -sp ../results/sample_quantized_imagenet_010

# Image reconstruction (Change the mask_ratio parameter to obtain different patch drop ratio)
CUDA_VISIBLE_DEVICES=0 python -u quantize_pixel.py \
    --data ImageNet --data_path ~/data_imagenet/train \
    --output_dir ../results/pixel_quantized_imagenet --model mae_vit_large_patch16 \
    --resume ./pretrained/mae_visualize_vit_large_ganloss.pth --batch_size 128 \
    --mask_ratio 0.2 --cam_mask

Training

For data keep ratio higher than 10%, we use a batch size of 128. Otherwise, we use a batch size of 16 for sufficient training.

Note that the final data keep ratio is the multiplication of the fraction in bin sampling and the patch keep ratio in image reconstruction.

CIFAR-10

CUDA_VISIBLE_DEVICES=0 python validate_cifar.py \
    --data_dir ../results/pixel_quantized_cifar/ \
    --select_indices ../results/sample_quantized_cifar_010/select_indices_CIFAR10_0.125.npy \
    --batch_size 16

ImageNet

We use timm for evaluating the quantized ImageNet data. For more instructions you can refer to the README inside the pytorch_image_models folder or the official timm repo.

cd pytorch_image_models
sh distributed_train.sh 8 \
    ../../results/pixel_quantized_imagenet ~/data_imagenet/val \
    --select-indices ../../results/sample_quantized_imagenet_010/select_indices_ImageNet_0.125.npy \
    --output ../../results/training_logs \
    --model resnet50 --sched cosine --epochs 260 --lr 0.6 --reprob 0.6 --remode pixel \
    --batch-size 128 --amp --aug-splits 3 -aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce

DQ for Instruction Fine-tuning

Here we provide the code of DQ to compress the instruction fine-tunning datasets alpaca, which consists of 52K instructions. To compress the dataset, we first extract the embeddings for each instruction with response by OpenAI Embedding API, and then use DQ to sample a fraction of dataset.

Embedding Extraction

The extracted embeddings can be downloaded from this link. The generation fees are smaller than $1.

Optionally, you can generate the embeddings by yourself with your OPENAI key, the --index and --nums can be used for parallelization.

python embed.py --index 0 --nums 10000
python embed.py --index 1 --nums 10000
python embed.py --index 2 --nums 10000
python embed.py --index 3 --nums 10000
python embed.py --index 4 --nums 10000
python embed.py --index 5 --nums 10000

Then, you can merge the embeddings with the following command:

python alpaca_embed.py --merge

DQ Sampling

To generate the sampled dataset, you can run the following command:

python alpaca_sample.py --ratio 0.1 --k 10

For your reference, we provided some sampled results in the data/alpaca folder.

Training

We use stanford_alpaca to finetune the 7B llama model. Please follow the instructions in the repo to run the finetuning. For the 1k sampled dataset, we use the following command to finetune the model. The hyper-parameter comes from the LIMA paper.

torchrun --nproc_per_node=8 --master_port=<your_random_port> train.py \
    --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> \
    --output_dir ./data/alpaca/alpaca_data_dq_k5_1k.json \
    --data_path <your_output_dir> \
    --bf16 True \
    --num_train_epochs 9 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 200 \
    --save_total_limit 10 \
    --learning_rate 8e-6 \
    --adam_beta2 0.95 \
    --weight_decay 0.1 \
    --lr_scheduler_type "linear" \
    --logging_steps 1 \
    --fsdp "full_shard auto_wrap" \
    --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
    --tf32 True

Evaluation

We use instruct-eval repo to evaluate the finetuned model. Please follow the instructions in the repo to run the evaluation.

Acknowledgement

This project is mainly developed based on the following repos:

We would like to especially thank Zangwei Zheng for his help on the implementation of DQ in language tasks and Ge Yan for his advice on the mathematical proof of the submodular part.

Citation

If you find this work helpful, please cite:

@article{zhou2023dataset,
  title={Dataset Quantization},
  author={Zhou, Daquan and Wang, Kai and Gu, Jianyang and Peng, Xiangyu and Lian, Dongze and Zhang, Yifan and You, Yang and Feng, Jiashi},
  journal={arXiv preprint arXiv:2308.10524},
  year={2023}
}