Skip to content

Semantic information can help CNNs to get better illuminant estimation -- a proof of concept

License

Notifications You must be signed in to change notification settings

mahmoudnafifi/Semantic-Color-Constancy-Using-CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic white balance: Semantic Color Constancy using Convolutional Neural Network (SCCCNN)

Note that color constancy using diagonal correction should be applied to the linear RAW image. Here, we did not use that because of the absence of semantic segmentation models for RAW images (just a proof of concept). Read the report for more information.

To generate semantic masks, you can download Refinenet from the following link:

https://github.com/guosheng/refinenet

Remember: you have to use the model trained on MIT ADE20K dataset (ResNet-152) for scene understanding

Download the semantic white balance network from the following link: https://drive.google.com/file/d/0B6CktEG1p54WVVpyMlhOMjBjZk0/view?usp=sharing&resourcekey=0-F3-dFS8yWTq8G0chYu2Lvg

Because of the 4-D images, you are going to get an error states the following: Error using imageInputLayer>iParseInputArguments (line 59) The value of 'InputSize' is invalid. Expected input image size to be a 2 or 3 element vector. For a 3-element vector, the third element must be 3 or 1.

To fix it, do the following: -Open Matlab (run as administrator) -Write: edit imageInputLayer.m

-replace the following code:

function tf = iIsValidRGBImageSize(sz)
tf = numel(sz) == 3 && sz(end) == 3;
end

with the modified function:

function tf = iIsValidRGBImageSize(sz)
tf = numel(sz) == 3 && (sz(end) == 3 || sz(end) == 4);
end

-save

You can read the report from here: https://arxiv.org/abs/1802.00153

If you use this code, please cite it as:

Mahmoud Afifi. "Semantic White Balance: Semantic Color Constancy Using Convolutional Neural Network." arXiv preprint arXiv:1802.00153 (2018).

View Semantic-Color-Constancy-Using-CNN on File Exchange

Related Research Projects

  • sRGB Image White Balancing:
  • Raw Image White Balancing:
    • APAP Bias Correction: A locally adaptive bias correction technique for illuminant estimation (JOSA A 2019).
    • SIIE: A sensor-independent deep learning framework for illumination estimation (BMVC 2019).
    • C5: A self-calibration method for cross-camera illuminant estimation (arXiv 2020).