Skip to content

malshaV/sar_overcomplete

Repository files navigation

SAR despeckling using overcomplete convolutional networks

Using the code:

The code is stable while using Python 3.6.13, CUDA >=10.1

  • Clone this repository:
git clone https://github.com/malshaV/sar_overcomplete
cd sar_overcomplete

To install all the dependencies using conda:

conda env create -f environment.yml
conda activate sar

If you prefer pip, install following versions:

timm==0.3.2
mmcv-full==1.2.7
torch==1.7.1
torchvision==0.8.2
opencv-python==4.5.1.48

Creating synthetic data:

This network was trained synthetic SAR images generated using BSD500. To create the synthetic data use create_synthetic_data.py file.

To train the network:

python train.py --batch_size 1 --epoch 400 --modelname "OUSAR" --learning_rate 0.0002 --train_dataset "path_to_training_data" --val_dataset "path_to _validation_data" --direc "path_to_save_results" --crop 128

To test the network:

python test.py --loadmodel "./pretrained_models/model.pth" --save_path "./test_images/" --model "OUSAR"

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages