-
Notifications
You must be signed in to change notification settings - Fork 407
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
1 parent
76bfa6c
commit 7ee3f77
Showing
22 changed files
with
2,068 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -10,4 +10,5 @@ markdown | |
pandas | ||
future | ||
Flask | ||
scipy | ||
scipy | ||
scikit-learn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
import re | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from six import string_types | ||
|
||
import dtale.global_state as global_state | ||
from dtale.utils import classify_type, find_dtype | ||
|
||
|
||
class ColumnReplacement(object): | ||
|
||
def __init__(self, data_id, col, replacement_type, cfg, name=None): | ||
self.data_id = data_id | ||
if replacement_type == 'spaces': | ||
self.builder = SpaceReplacement(col, cfg, name) | ||
elif replacement_type == 'strings': | ||
self.builder = StringReplacement(col, cfg, name) | ||
elif replacement_type == 'value': | ||
self.builder = ValueReplacement(col, cfg, name) | ||
elif replacement_type == 'imputer': # iterative, knn, simple | ||
self.builder = ImputerReplacement(col, cfg, name) | ||
else: | ||
raise NotImplementedError("'{}' replacement not implemented yet!".format(replacement_type)) | ||
|
||
def build_replacements(self): | ||
return self.builder.build_column(global_state.get_data(self.data_id)) | ||
|
||
def build_code(self): | ||
return self.builder.build_code(global_state.get_data(self.data_id)) | ||
|
||
|
||
def get_inner_replacement_value(val): | ||
return np.nan if isinstance(val, string_types) and val.lower() == 'nan' else val | ||
|
||
|
||
def get_replacement_value(cfg, prop): | ||
value = (cfg or {}).get(prop) or 'nan' | ||
return get_inner_replacement_value(value) | ||
|
||
|
||
def get_inner_replacement_value_as_str(val, series): | ||
if isinstance(val, string_types) and val.lower() == 'nan': | ||
return 'np.nan' | ||
if classify_type(find_dtype(series)) == 'S': | ||
return "'{value}'".format(value=val) | ||
return val | ||
|
||
|
||
def get_replacement_value_as_str(cfg, prop, series): | ||
value = (cfg or {}).get(prop) or 'nan' | ||
return get_inner_replacement_value_as_str(value, series) | ||
|
||
|
||
class SpaceReplacement(object): | ||
|
||
def __init__(self, col, cfg, name): | ||
self.col = col | ||
self.cfg = cfg | ||
self.name = name | ||
|
||
def build_column(self, data): | ||
value = get_replacement_value(self.cfg, 'value') | ||
return data[self.col].replace(r'^\s+$', value, regex=True) | ||
|
||
def build_code(self, data): | ||
value = get_replacement_value_as_str(self.cfg, 'value', data[self.col]) | ||
return "df.loc[:, '{name}'] = df['{col}'].replace(r'^\\s+$', {value}, regex=True)".format( | ||
name=self.name or self.col, col=self.col, value=value | ||
) | ||
|
||
|
||
class StringReplacement(object): | ||
|
||
def __init__(self, col, cfg, name): | ||
self.col = col | ||
self.cfg = cfg | ||
self.name = name | ||
|
||
def parse_cfg(self): | ||
return (self.cfg[p] for p in ['value', 'ignoreCase', 'isChar']) | ||
|
||
def build_column(self, data): | ||
value, ignore_case, is_char = self.parse_cfg() | ||
flags = re.UNICODE | ||
if ignore_case: | ||
flags |= re.IGNORECASE | ||
value = re.escape(value) | ||
if is_char: | ||
value = '[{value}]+'.format(value=value) | ||
regex_pat = re.compile(r'^ *{value} *$'.format(value=value), flags=flags) | ||
replace_with = get_replacement_value(self.cfg, 'replace') | ||
return data[self.col].replace(regex_pat, replace_with, regex=True) | ||
|
||
def build_code(self, data): | ||
value, ignore_case, is_char = self.parse_cfg() | ||
flags = re.UNICODE | ||
if ignore_case: | ||
flags |= re.IGNORECASE | ||
|
||
regex_exp = "r'^ *{value} *$'.format(value=re.escape({value}))" | ||
if is_char: | ||
regex_exp = "r'^ *[{value}]+ *$'.format(value=re.escape({value}))" | ||
regex_exp = regex_exp.format(value=value) | ||
|
||
replace_with = get_replacement_value_as_str(self.cfg, 'replace', data[self.col]) | ||
|
||
return ( | ||
"import re\n\n" | ||
"regex_pat = re.compile({regex_exp}, flags={flags})\n" | ||
"df.loc[:, '{name}'] = df['{col}'].replace(regex_pat, {replace}, regex=True)" | ||
).format(name=self.name or self.col, col=self.col, regex_exp=regex_exp, flags=flags, replace=replace_with) | ||
|
||
|
||
class ValueReplacement(object): | ||
|
||
def __init__(self, col, cfg, name): | ||
self.col = col | ||
self.cfg = cfg | ||
self.name = name | ||
|
||
def build_column(self, data): | ||
s = data[self.col] | ||
replacements = {} | ||
col_replacements = [] | ||
for replacement in self.cfg.get('value', []): | ||
value = get_replacement_value(replacement, 'value') | ||
replacement_type = replacement.get('type') | ||
if replacement_type == 'agg': | ||
replace = getattr(s, replacement['replace'])() # min, max, mean, median | ||
if pd.isnull(replace): | ||
raise Exception( | ||
'Running the aggregation, {agg}, on {col} resulted in nan, this would result in a no-op.' | ||
) | ||
elif replacement_type == 'col': | ||
col_replacements.append(lambda s2: np.where(s2 == value, data[replacement['replace']], s2)) | ||
else: | ||
replace = get_replacement_value(replacement, 'replace') | ||
replacements[value] = replace | ||
final_s = s | ||
if len(replacements): | ||
final_s = final_s.replace(replacements) | ||
for col_r in col_replacements: | ||
final_s = col_r(final_s) | ||
return final_s | ||
|
||
def build_code(self, data): | ||
replacements = [] | ||
series = data[self.col] | ||
col_replacements = [] | ||
for replacement in self.cfg.get('value', []): | ||
value = get_replacement_value_as_str(replacement, 'value', series) | ||
replacement_type = self.cfg.get('type') | ||
if replacement_type == 'agg': | ||
replace = "getattr(df['{col}'], '{agg}')()".format(agg=replacement['value'], col=self.col) | ||
elif replacement_type == 'col': | ||
col_replacements.append("s = np.where(s == {value}, data['{col2}'], s)".format( | ||
col2=replacement['replace'], value=value | ||
)) | ||
else: | ||
replace = get_replacement_value_as_str(replacement, 'replace', series) | ||
replacements.append('\t{value}: {replace}'.format(value=value, replace=replace)) | ||
|
||
code = ["s = df['{col}']".format(col=self.col)] | ||
if len(replacements): | ||
replacements = ',\n'.join(replacements) | ||
replacements = '{\n' + replacements + '}' | ||
code.append("s = s.replace({replacements})".format(replacements=replacements)) | ||
code += col_replacements | ||
code.append("df.loc[:, '{name}'] = s".format(name=self.name or self.col)) | ||
return '\n'.join(code) | ||
|
||
|
||
class ImputerReplacement(object): | ||
|
||
def __init__(self, col, cfg, name): | ||
self.col = col | ||
self.cfg = cfg | ||
self.name = name | ||
|
||
def build_column(self, data): | ||
imputer_type = self.cfg['type'] | ||
if imputer_type == 'iterative': | ||
try: | ||
from sklearn.experimental import enable_iterative_imputer # noqa | ||
from sklearn.impute import IterativeImputer | ||
except ImportError: | ||
raise Exception( | ||
'You must have at least scikit-learn 0.21.0 installed in order to use the Iterative Imputer!' | ||
) | ||
imputer = IterativeImputer() | ||
elif imputer_type == 'knn': | ||
try: | ||
from sklearn.impute import KNNImputer | ||
except ImportError: | ||
raise Exception( | ||
'You must have at least scikit-learn 0.22.0 installed in order to use the Iterative Imputer!' | ||
) | ||
n_neighbors = self.cfg.get('n_neighbors') or 2 | ||
imputer = KNNImputer(n_neighbors=n_neighbors) | ||
elif imputer_type == 'simple': | ||
try: | ||
from sklearn.impute import SimpleImputer | ||
except ImportError: | ||
raise Exception( | ||
'You must have at least scikit-learn 0.20.0 installed in order to use the Iterative Imputer!' | ||
) | ||
imputer = SimpleImputer() | ||
else: | ||
raise NotImplementedError("'{}' sklearn imputer not implemented yet!".format(imputer_type)) | ||
output = imputer.fit_transform(data[[self.col]]) | ||
return pd.DataFrame(output, columns=[self.col], index=data.index)[self.col] | ||
|
||
def build_code(self, _data): | ||
imputer_type = self.cfg['type'] | ||
code = [] | ||
if imputer_type == 'iterative': | ||
code.append(( | ||
"from sklearn.experimental import enable_iterative_imputer\n" | ||
"from sklearn.impute import IterativeImputer\n\n" | ||
"output = IterativeImputer().fit_transform(df[['{col}']])" | ||
).format(col=self.col)) | ||
elif imputer_type == 'knn': | ||
n_neighbors = self.cfg.get('n_neighbors') or 2 | ||
code.append(( | ||
"from sklearn.impute import KNNImputer\n\n" | ||
"output = KNNImputer(n_neighbors={n_neighbors}).fit_transform(df[['{col}']])" | ||
).format(col=self.col, n_neighbors=n_neighbors)) | ||
elif imputer_type == 'simple': | ||
code.append(( | ||
"from sklearn.impute import SimpleImputer\n\n" | ||
"output = SimpleImputer().fit_transform(df[['{col}']])" | ||
).format(col=self.col)) | ||
code.append( | ||
"df.loc[:, '{name}'] = pd.DataFrame(output, columns=['{col}'], index=df.index)['{col}']".format( | ||
name=self.name or self.col, col=self.col | ||
) | ||
) | ||
return '\n'.join(code) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.