Skip to content

Implement Base Agent Framework for Agentic AI #121

@manavgup

Description

@manavgup

Implement Base Agent Framework

Priority: HIGH

Phase: Agentic AI Foundation (Sprint 8, Weeks 1-2)
Transforms: RAG system into autonomous agent system

Core Components to Build

1. Agent Base Architecture

  • Design BaseAgent abstract class
  • Implement agent state management
  • Create agent registry and factory
  • Build agent configuration system
  • Implement agent lifecycle management
  • Create inter-agent communication protocol
  • Build agent monitoring and logging
  • Implement error handling and recovery

2. Planning & Reasoning System

  • Implement Chain-of-Thought (CoT) reasoning
  • Create ReAct (Reasoning + Acting) framework
  • Build task decomposition system
  • Implement goal-oriented planning
  • Create plan validation system
  • Build plan execution engine
  • Implement plan monitoring
  • Create adaptive planning

3. Memory Management

  • Design short-term memory for conversations
  • Implement long-term memory with vector storage
  • Create episodic memory for task sequences
  • Build semantic memory for knowledge
  • Implement memory retrieval system
  • Create memory consolidation
  • Build memory pruning strategy
  • Implement persistence layer

Implementation Structure

# backend/rag_solution/agents/base_agent.py
class BaseAgent(ABC):
    def __init__(self, config: AgentConfig):
        self.planner = Planner()
        self.executor = Executor()
        self.memory = MemoryManager()
        self.reflector = Reflector()
    
    @abstractmethod
    async def run(self, task: Task) -> Result:
        # 1. Plan
        plan = await self.planner.create_plan(task)
        
        # 2. Execute
        results = await self.executor.execute(plan)
        
        # 3. Reflect
        evaluation = await self.reflector.evaluate(results)
        
        # 4. Store
        await self.memory.store(task, plan, results)
        
        return results

# backend/rag_solution/agents/planner.py
class Planner:
    def create_plan(self, task: Task) -> Plan:
        # Decompose task
        # Select strategy
        # Create step sequence
        # Validate feasibility

# backend/rag_solution/agents/memory.py
class MemoryManager:
    def __init__(self):
        self.working_memory = {}  # Current context
        self.episodic_memory = []  # Past interactions
        self.semantic_memory = VectorStore()  # Knowledge

Configuration Schema

agent:
  type: "base"
  planning:
    strategy: "chain_of_thought"
    max_depth: 5
    timeout: 60
  memory:
    working_size: 100
    episodic_retention: "7d"
    semantic_threshold: 0.8
  execution:
    max_retries: 3
    error_strategy: "fallback"

Acceptance Criteria

  • Base agent class implemented and tested
  • Planning system can decompose complex tasks
  • Memory system persists across sessions
  • Agent can self-reflect on performance
  • Error recovery mechanisms work
  • Configuration system is flexible
  • Monitoring provides insights
  • Documentation complete

Dependencies

  • Existing RAG infrastructure
  • LLM providers (OpenAI, Anthropic, WatsonX)
  • Vector store for memory
  • Message queue for agent communication

Effort: 2 weeks
Team: Backend development
Next: Tool integration framework

Metadata

Metadata

Assignees

No one assigned

    Labels

    agenticAgentic AI featuresenhancementNew feature or request

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions