-
Notifications
You must be signed in to change notification settings - Fork 4
Closed
Labels
agenticAgentic AI featuresAgentic AI featuresenhancementNew feature or requestNew feature or request
Milestone
Description
Implement Base Agent Framework
Priority: HIGH
Phase: Agentic AI Foundation (Sprint 8, Weeks 1-2)
Transforms: RAG system into autonomous agent system
Core Components to Build
1. Agent Base Architecture
- Design BaseAgent abstract class
- Implement agent state management
- Create agent registry and factory
- Build agent configuration system
- Implement agent lifecycle management
- Create inter-agent communication protocol
- Build agent monitoring and logging
- Implement error handling and recovery
2. Planning & Reasoning System
- Implement Chain-of-Thought (CoT) reasoning
- Create ReAct (Reasoning + Acting) framework
- Build task decomposition system
- Implement goal-oriented planning
- Create plan validation system
- Build plan execution engine
- Implement plan monitoring
- Create adaptive planning
3. Memory Management
- Design short-term memory for conversations
- Implement long-term memory with vector storage
- Create episodic memory for task sequences
- Build semantic memory for knowledge
- Implement memory retrieval system
- Create memory consolidation
- Build memory pruning strategy
- Implement persistence layer
Implementation Structure
# backend/rag_solution/agents/base_agent.py
class BaseAgent(ABC):
def __init__(self, config: AgentConfig):
self.planner = Planner()
self.executor = Executor()
self.memory = MemoryManager()
self.reflector = Reflector()
@abstractmethod
async def run(self, task: Task) -> Result:
# 1. Plan
plan = await self.planner.create_plan(task)
# 2. Execute
results = await self.executor.execute(plan)
# 3. Reflect
evaluation = await self.reflector.evaluate(results)
# 4. Store
await self.memory.store(task, plan, results)
return results
# backend/rag_solution/agents/planner.py
class Planner:
def create_plan(self, task: Task) -> Plan:
# Decompose task
# Select strategy
# Create step sequence
# Validate feasibility
# backend/rag_solution/agents/memory.py
class MemoryManager:
def __init__(self):
self.working_memory = {} # Current context
self.episodic_memory = [] # Past interactions
self.semantic_memory = VectorStore() # KnowledgeConfiguration Schema
agent:
type: "base"
planning:
strategy: "chain_of_thought"
max_depth: 5
timeout: 60
memory:
working_size: 100
episodic_retention: "7d"
semantic_threshold: 0.8
execution:
max_retries: 3
error_strategy: "fallback"Acceptance Criteria
- Base agent class implemented and tested
- Planning system can decompose complex tasks
- Memory system persists across sessions
- Agent can self-reflect on performance
- Error recovery mechanisms work
- Configuration system is flexible
- Monitoring provides insights
- Documentation complete
Dependencies
- Existing RAG infrastructure
- LLM providers (OpenAI, Anthropic, WatsonX)
- Vector store for memory
- Message queue for agent communication
Effort: 2 weeks
Team: Backend development
Next: Tool integration framework
Metadata
Metadata
Assignees
Labels
agenticAgentic AI featuresAgentic AI featuresenhancementNew feature or requestNew feature or request