-
Notifications
You must be signed in to change notification settings - Fork 4
Closed
Labels
agenticAgentic AI featuresAgentic AI featuresenhancementNew feature or requestNew feature or request
Milestone
Description
Build Tool Integration Framework
Priority: HIGH
Phase: Agentic AI Tools (Sprint 8, Weeks 3-4)
Enables: Agents to interact with external systems
Tool System Architecture
Core Framework Components
- Design tool interface specification
- Create tool registry system
- Implement tool discovery mechanism
- Build tool validation system
- Create tool execution sandbox
- Implement result parsing
- Build error handling
- Create tool documentation system
Essential Tools to Implement
1. DocumentSearchTool
class DocumentSearchTool(BaseTool):
name = "search_documents"
description = "Search through document collections"
def execute(self, query: str, filters: dict) -> SearchResults:
# Semantic search
# Hybrid search
# Ranking2. DataAnalysisTool
class DataAnalysisTool(BaseTool):
name = "analyze_data"
description = "Perform statistical analysis on data"
def execute(self, data: DataFrame, operations: List[str]) -> Analysis:
# Statistical analysis
# Pattern detection
# Visualization3. WebSearchTool
class WebSearchTool(BaseTool):
name = "search_web"
description = "Search external web sources"
def execute(self, query: str, sources: List[str]) -> WebResults:
# API integration
# Result aggregation
# Source validation4. CodeExecutionTool
class CodeExecutionTool(BaseTool):
name = "execute_code"
description = "Safely execute code snippets"
def execute(self, code: str, language: str) -> ExecutionResult:
# Sandbox execution
# Resource limits
# Output captureTool Orchestration System
- Implement tool selection logic
- Create tool chaining mechanism
- Build parallel tool execution
- Implement dependency resolution
- Create result aggregation
- Build performance monitoring
- Implement fallback strategies
- Create usage optimization
Tool Configuration
tools:
document_search:
enabled: true
max_results: 10
timeout: 5s
data_analysis:
enabled: true
max_memory: 1GB
operations: ["stats", "plot", "predict"]
web_search:
enabled: true
api_keys:
google: ${GOOGLE_API_KEY}
rate_limit: 100/hour
code_execution:
enabled: false # Disabled by default for security
languages: ["python", "javascript"]
sandbox: true
timeout: 30sIntegration Requirements
Tool Registry
class ToolRegistry:
def register(self, tool: BaseTool):
# Validate tool interface
# Check dependencies
# Register capabilities
def discover(self, capability: str) -> List[BaseTool]:
# Find tools by capability
# Check availability
# Return ranked list
def execute(self, tool_name: str, params: dict) -> Result:
# Validate parameters
# Execute in sandbox
# Handle errors
# Return resultsSecurity & Sandboxing
- Input validation for all tools
- Output sanitization
- Resource limits (CPU, memory, time)
- Network isolation options
- Audit logging
- Permission system
- Rate limiting
- Error boundaries
Acceptance Criteria
- Tool framework implemented and tested
- Core tools (search, analysis, web) working
- Tool orchestration handles complex workflows
- Security sandbox prevents malicious code
- Tool registry supports dynamic loading
- Performance monitoring in place
- Error handling robust
- Documentation complete
Testing Requirements
- Unit tests for each tool
- Integration tests for orchestration
- Security tests for sandbox
- Performance benchmarks
- Error scenario coverage
Effort: 2 weeks
Team: Backend development
Dependencies: Base agent framework
Next: Specialized agent implementation
Metadata
Metadata
Assignees
Labels
agenticAgentic AI featuresAgentic AI featuresenhancementNew feature or requestNew feature or request