-
Notifications
You must be signed in to change notification settings - Fork 4
Closed
Labels
agenticAgentic AI featuresAgentic AI featuresenhancementNew feature or requestNew feature or request
Milestone
Description
Implement Advanced Agent Capabilities
Priority: MEDIUM
Phase: Advanced Agentic AI (Weeks 7-8)
Goal: Add self-improvement and learning capabilities
Self-Reflection System
Performance Self-Evaluation
- Implement success metrics tracking
- Create performance scoring system
- Build comparative analysis
- Implement confidence scoring
- Create quality assessment
- Build improvement suggestions
- Implement A/B testing for strategies
- Create performance dashboards
class SelfReflection:
def evaluate_performance(self, task: Task, result: Result) -> Evaluation:
metrics = {
'accuracy': self.measure_accuracy(result),
'efficiency': self.measure_efficiency(result),
'completeness': self.measure_completeness(result),
'confidence': self.calculate_confidence(result)
}
improvements = self.suggest_improvements(metrics)
return Evaluation(metrics, improvements)Error Analysis System
- Implement error classification
- Create root cause analysis
- Build error pattern detection
- Implement recovery strategies
- Create error prevention rules
- Build error reporting
- Implement automated fixes
- Create error dashboards
Strategy Improvement
- Track strategy effectiveness
- Compare different approaches
- Identify optimal strategies
- Implement strategy evolution
- Create strategy selection logic
- Build performance prediction
- Implement strategy caching
- Create strategy documentation
Learning Mechanisms
Learning from Feedback
- Implement feedback collection
- Create feedback analysis
- Build preference learning
- Implement behavior adaptation
- Create reinforcement learning
- Build reward modeling
- Implement policy updates
- Create learning metrics
class LearningSystem:
def learn_from_feedback(self, feedback: Feedback):
# Update preferences
self.preference_model.update(feedback)
# Adjust strategies
self.strategy_selector.adapt(feedback)
# Update knowledge base
self.knowledge_base.incorporate(feedback)
# Improve future predictions
self.predictor.retrain(feedback)Pattern Recognition
- Implement pattern detection algorithms
- Create pattern storage system
- Build pattern matching engine
- Implement anomaly detection
- Create pattern visualization
- Build pattern-based predictions
- Implement pattern evolution
- Create pattern documentation
Knowledge Accumulation
- Implement knowledge extraction
- Create knowledge representation
- Build knowledge validation
- Implement knowledge integration
- Create knowledge retrieval
- Build knowledge updating
- Implement knowledge pruning
- Create knowledge metrics
Autonomous Decision Making
Decision Framework
class DecisionMaker:
def make_decision(self, options: List[Option]) -> Decision:
# Evaluate each option
evaluations = [self.evaluate(opt) for opt in options]
# Consider constraints
valid_options = self.apply_constraints(evaluations)
# Apply decision criteria
best_option = self.select_best(valid_options)
# Generate explanation
explanation = self.explain_decision(best_option)
return Decision(best_option, explanation)Components to Build
- Decision tree implementation
- Cost-benefit analysis
- Risk assessment module
- Uncertainty quantification
- Multi-criteria decision analysis
- Explainable AI module
- Ethical constraints checker
- Safety validation system
Advanced Reasoning
Reasoning Capabilities
- Causal reasoning engine
- Counterfactual analysis
- Analogical reasoning
- Temporal reasoning
- Spatial reasoning
- Abstract reasoning
- Common sense reasoning
- Meta-reasoning system
class AdvancedReasoner:
def reason(self, context: Context) -> Reasoning:
# Apply multiple reasoning strategies
causal = self.causal_reasoning(context)
temporal = self.temporal_reasoning(context)
spatial = self.spatial_reasoning(context)
# Combine reasoning results
combined = self.combine_reasoning([causal, temporal, spatial])
# Validate reasoning
validated = self.validate_reasoning(combined)
return validatedAdaptive Behavior
Adaptation Mechanisms
- Context-aware adaptation
- User preference adaptation
- Task-specific adaptation
- Performance-based adaptation
- Environment adaptation
- Resource adaptation
- Time-based adaptation
- Goal adaptation
Implementation Example
class AdaptiveAgent(BaseAgent):
def adapt(self):
# Monitor performance
performance = self.monitor.get_metrics()
# Identify areas for improvement
improvements = self.analyzer.find_improvements(performance)
# Update behavior
for improvement in improvements:
self.update_strategy(improvement)
self.update_parameters(improvement)
# Validate changes
self.validator.check_improvements()Testing Strategy
Self-Reflection Tests
- Performance evaluation accuracy
- Error analysis correctness
- Strategy improvement effectiveness
- Feedback integration
Learning Tests
- Learning rate validation
- Knowledge retention
- Pattern recognition accuracy
- Adaptation effectiveness
Reasoning Tests
- Reasoning correctness
- Explanation quality
- Decision consistency
- Safety compliance
Metrics & Monitoring
metrics:
self_reflection:
evaluation_accuracy: > 90%
improvement_rate: > 10% per iteration
error_reduction: > 20% over time
learning:
feedback_incorporation: < 1s
pattern_recognition: > 85% accuracy
knowledge_retention: > 95%
reasoning:
decision_quality: > 90%
explanation_clarity: > 4.0/5.0
safety_compliance: 100%Acceptance Criteria
- Self-reflection system operational
- Learning mechanisms functional
- Advanced reasoning working
- Adaptive behavior demonstrated
- Performance improvements measurable
- Safety constraints enforced
- Documentation complete
- Tests comprehensive
Effort: 4 weeks
Team: AI/ML specialists + Backend
Dependencies: Base agent framework
Impact: Transforms agents from reactive to proactive
Metadata
Metadata
Assignees
Labels
agenticAgentic AI featuresAgentic AI featuresenhancementNew feature or requestNew feature or request