-
Notifications
You must be signed in to change notification settings - Fork 4
Description
EPIC-001: Agent Orchestration Framework
Epic Overview
Epic Title: Implement Multi-Agent Orchestration Framework for Specialized RAG Tasks
Epic Description:
Build a comprehensive multi-agent system where specialized agents can collaborate to handle complex RAG queries. This framework will enable Research Agents, Synthesis Agents, Validation Agents, and Task Planners to work together in a coordinated manner to provide more accurate and comprehensive responses.
Business Value:
- Enhanced query handling capabilities for complex multi-step questions
- Improved accuracy through specialized agent expertise
- Better fact-checking and validation through agent collaboration
- Foundation for advanced agentic workflows
Epic Priority: High
Epic Size: Large (Epic)
Target Release: Q4 2024
Technical Architecture
Current State Analysis
- Existing single-threaded RAG pipeline in
pipeline_service.py - Service-based architecture with clean separation of concerns
- Models in
backend/rag_solution/models/ - Services in
backend/rag_solution/services/ - No current agent framework or orchestration
Target Architecture
Agent Orchestration Layer
├── Agent Registry & Discovery
├── Communication Bus
├── Task Orchestrator
├── Agent Lifecycle Management
└── Inter-Agent Communication Protocol
Database Schema Changes
New Tables Required
1. Agent Registry Table
CREATE TABLE agents (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
name VARCHAR(255) NOT NULL,
agent_type VARCHAR(100) NOT NULL, -- 'research', 'synthesis', 'validation', 'planner'
description TEXT,
capabilities JSONB, -- Array of capability strings
configuration JSONB, -- Agent-specific config
status VARCHAR(50) DEFAULT 'active', -- 'active', 'inactive', 'maintenance'
version VARCHAR(50),
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);2. Agent Sessions Table
CREATE TABLE agent_sessions (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
orchestration_id UUID REFERENCES orchestrations(id),
agent_id UUID REFERENCES agents(id),
status VARCHAR(50) DEFAULT 'pending', -- 'pending', 'running', 'completed', 'failed'
input_data JSONB,
output_data JSONB,
error_message TEXT,
started_at TIMESTAMP,
completed_at TIMESTAMP,
created_at TIMESTAMP DEFAULT NOW()
);3. Orchestrations Table
CREATE TABLE orchestrations (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID REFERENCES users(id),
collection_id UUID REFERENCES collections(id),
query TEXT NOT NULL,
orchestration_plan JSONB, -- DAG of agent execution plan
status VARCHAR(50) DEFAULT 'pending', -- 'pending', 'running', 'completed', 'failed'
final_result JSONB,
metadata JSONB,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);4. Agent Communications Table
CREATE TABLE agent_communications (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
orchestration_id UUID REFERENCES orchestrations(id),
sender_agent_id UUID REFERENCES agents(id),
receiver_agent_id UUID REFERENCES agents(id),
message_type VARCHAR(100), -- 'task', 'result', 'query', 'error'
message_data JSONB,
timestamp TIMESTAMP DEFAULT NOW()
);New Models Required
1. Agent Model (backend/rag_solution/models/agent.py)
from sqlalchemy import String, DateTime, JSON
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import Mapped, mapped_column, relationship
from typing import Dict, List, Any
import uuid
from datetime import datetime
from rag_solution.file_management.database import Base
class Agent(Base):
__tablename__ = "agents"
id: Mapped[uuid.UUID] = mapped_column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
name: Mapped[str] = mapped_column(String(255), nullable=False)
agent_type: Mapped[str] = mapped_column(String(100), nullable=False)
description: Mapped[str] = mapped_column(String, nullable=True)
capabilities: Mapped[Dict[str, Any]] = mapped_column(JSON, nullable=True)
configuration: Mapped[Dict[str, Any]] = mapped_column(JSON, nullable=True)
status: Mapped[str] = mapped_column(String(50), default="active")
version: Mapped[str] = mapped_column(String(50), nullable=True)
created_at: Mapped[datetime] = mapped_column(DateTime, default=datetime.now)
updated_at: Mapped[datetime] = mapped_column(DateTime, default=datetime.now, onupdate=datetime.now)
# Relationships
sessions: Mapped[List["AgentSession"]] = relationship("AgentSession", back_populates="agent")2. Orchestration Model (backend/rag_solution/models/orchestration.py)
class Orchestration(Base):
__tablename__ = "orchestrations"
id: Mapped[uuid.UUID] = mapped_column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
user_id: Mapped[uuid.UUID] = mapped_column(UUID(as_uuid=True), ForeignKey("users.id"))
collection_id: Mapped[uuid.UUID] = mapped_column(UUID(as_uuid=True), ForeignKey("collections.id"))
query: Mapped[str] = mapped_column(String, nullable=False)
orchestration_plan: Mapped[Dict[str, Any]] = mapped_column(JSON, nullable=True)
status: Mapped[str] = mapped_column(String(50), default="pending")
final_result: Mapped[Dict[str, Any]] = mapped_column(JSON, nullable=True)
metadata: Mapped[Dict[str, Any]] = mapped_column(JSON, nullable=True)
created_at: Mapped[datetime] = mapped_column(DateTime, default=datetime.now)
updated_at: Mapped[datetime] = mapped_column(DateTime, default=datetime.now, onupdate=datetime.now)
# Relationships
user: Mapped["User"] = relationship("User")
collection: Mapped["Collection"] = relationship("Collection")
sessions: Mapped[List["AgentSession"]] = relationship("AgentSession", back_populates="orchestration")3. Agent Session Model (backend/rag_solution/models/agent_session.py)
4. Agent Communication Model (backend/rag_solution/models/agent_communication.py)
New Schemas Required
1. Agent Schemas (backend/rag_solution/schemas/agent_schema.py)
from pydantic import BaseModel, Field
from typing import Dict, Any, List, Optional
from datetime import datetime
import uuid
class AgentBase(BaseModel):
name: str = Field(..., description="Agent name")
agent_type: str = Field(..., description="Type of agent")
description: Optional[str] = None
capabilities: Optional[Dict[str, Any]] = None
configuration: Optional[Dict[str, Any]] = None
class AgentCreate(AgentBase):
pass
class AgentUpdate(BaseModel):
name: Optional[str] = None
description: Optional[str] = None
capabilities: Optional[Dict[str, Any]] = None
configuration: Optional[Dict[str, Any]] = None
status: Optional[str] = None
class Agent(AgentBase):
id: uuid.UUID
status: str
version: Optional[str]
created_at: datetime
updated_at: datetime
class Config:
from_attributes = True2. Orchestration Schemas (backend/rag_solution/schemas/orchestration_schema.py)
3. Agent Session Schemas (backend/rag_solution/schemas/agent_session_schema.py)
New Services Required
1. Agent Registry Service (backend/rag_solution/services/agent_registry_service.py)
Responsibilities:
- Register and discover agents
- Manage agent lifecycle
- Handle agent capabilities and configuration
Key Methods:
class AgentRegistryService:
async def register_agent(self, agent_data: AgentCreate) -> Agent
async def get_agent_by_id(self, agent_id: UUID) -> Agent
async def get_agents_by_type(self, agent_type: str) -> List[Agent]
async def get_agents_by_capability(self, capability: str) -> List[Agent]
async def update_agent(self, agent_id: UUID, update_data: AgentUpdate) -> Agent
async def deactivate_agent(self, agent_id: UUID) -> bool2. Orchestration Service (backend/rag_solution/services/orchestration_service.py)
Responsibilities:
- Plan and execute multi-agent workflows
- Coordinate agent communication
- Handle orchestration lifecycle
Key Methods:
class OrchestrationService:
async def create_orchestration(self, user_id: UUID, collection_id: UUID, query: str) -> Orchestration
async def plan_execution(self, orchestration_id: UUID) -> Dict[str, Any]
async def execute_orchestration(self, orchestration_id: UUID) -> Dict[str, Any]
async def get_orchestration_status(self, orchestration_id: UUID) -> str
async def cancel_orchestration(self, orchestration_id: UUID) -> bool3. Agent Communication Service (backend/rag_solution/services/agent_communication_service.py)
Responsibilities:
- Handle inter-agent messaging
- Maintain communication logs
- Provide communication bus functionality
4. Specialized Agent Services:
- Research Agent Service (
backend/rag_solution/services/research_agent_service.py) - Synthesis Agent Service (
backend/rag_solution/services/synthesis_agent_service.py) - Validation Agent Service (
backend/rag_solution/services/validation_agent_service.py) - Task Planner Service (
backend/rag_solution/services/task_planner_service.py)
New Router Endpoints Required
1. Agent Management Router (backend/rag_solution/router/agent_router.py)
# Agent CRUD operations
POST /api/v1/agents # Register new agent
GET /api/v1/agents # List all agents
GET /api/v1/agents/{agent_id} # Get agent details
PUT /api/v1/agents/{agent_id} # Update agent
DELETE /api/v1/agents/{agent_id} # Deactivate agent
GET /api/v1/agents/types/{agent_type} # Get agents by type
GET /api/v1/agents/capabilities/{capability} # Get agents by capability2. Orchestration Router (backend/rag_solution/router/orchestration_router.py)
# Orchestration management
POST /api/v1/orchestrations # Create new orchestration
GET /api/v1/orchestrations # List user orchestrations
GET /api/v1/orchestrations/{orchestration_id} # Get orchestration details
POST /api/v1/orchestrations/{orchestration_id}/execute # Execute orchestration
POST /api/v1/orchestrations/{orchestration_id}/cancel # Cancel orchestration
GET /api/v1/orchestrations/{orchestration_id}/status # Get execution status
GET /api/v1/orchestrations/{orchestration_id}/logs # Get execution logs3. Agent Communication Router (backend/rag_solution/router/agent_communication_router.py)
# Agent communication
GET /api/v1/communications/{orchestration_id} # Get communication logs
POST /api/v1/communications/send # Send inter-agent messageFrontend Changes Required
1. New React Components
Agent Management Interface (webui/src/components/AgentManagement/)
AgentList.jsx- Display registered agentsAgentDetails.jsx- Show agent capabilities and statusAgentRegistration.jsx- Register new agentsAgentConfiguration.jsx- Configure agent settings
Orchestration Interface (webui/src/components/Orchestration/)
OrchestrationDashboard.jsx- Main orchestration viewOrchestrationPlan.jsx- Visual DAG of execution planOrchestrationLogs.jsx- Real-time execution logsAgentCommunicationView.jsx- Inter-agent communication viewer
Enhanced Search Interface
- Update
SearchInterface.jsxto include orchestration options - Add toggle for "Enable Multi-Agent Processing"
- Display orchestration progress during query execution
2. New Context Providers
AgentContext.jsx- Manage agent stateOrchestrationContext.jsx- Manage orchestration state
3. New API Integration
api/agentService.js- Agent management API callsapi/orchestrationService.js- Orchestration API calls- Add WebSocket support for real-time orchestration updates
Database Migration Scripts
Migration Script: migrations/add_agent_orchestration_tables.sql
-- Create agent orchestration tables
-- (Include all CREATE TABLE statements from above)
-- Create indexes for performance
CREATE INDEX idx_agents_type ON agents(agent_type);
CREATE INDEX idx_agents_status ON agents(status);
CREATE INDEX idx_orchestrations_user_id ON orchestrations(user_id);
CREATE INDEX idx_orchestrations_status ON orchestrations(status);
CREATE INDEX idx_agent_sessions_orchestration_id ON agent_sessions(orchestration_id);
CREATE INDEX idx_agent_sessions_agent_id ON agent_sessions(agent_id);
CREATE INDEX idx_agent_communications_orchestration_id ON agent_communications(orchestration_id);Testing Strategy
Atomic Tests
Create backend/tests/atomic/test_agent_orchestration.py:
test_agent_model_creation()- Test Agent model instantiationtest_orchestration_model_creation()- Test Orchestration model instantiationtest_agent_session_model_creation()- Test AgentSession model instantiationtest_agent_communication_model_creation()- Test AgentCommunication model instantiationtest_agent_schema_validation()- Test Pydantic schema validationtest_orchestration_schema_validation()- Test orchestration schema validation
Unit Tests
Agent Registry Service Tests (backend/tests/unit/test_agent_registry_service.py)
test_register_agent_success()- Test successful agent registrationtest_register_agent_duplicate_name()- Test duplicate agent name handlingtest_get_agent_by_id_success()- Test agent retrieval by IDtest_get_agent_by_id_not_found()- Test agent not found casetest_get_agents_by_type()- Test filtering agents by typetest_get_agents_by_capability()- Test filtering agents by capabilitytest_update_agent_success()- Test agent updatestest_deactivate_agent()- Test agent deactivation
Orchestration Service Tests (backend/tests/unit/test_orchestration_service.py)
test_create_orchestration_success()- Test orchestration creationtest_plan_execution_simple_query()- Test execution planningtest_plan_execution_complex_query()- Test complex query planningtest_execute_orchestration_single_agent()- Test single agent executiontest_execute_orchestration_multi_agent()- Test multi-agent executiontest_orchestration_status_tracking()- Test status updatestest_cancel_orchestration()- Test orchestration cancellation
Specialized Agent Service Tests
test_research_agent_service()- Test research agent functionalitytest_synthesis_agent_service()- Test synthesis agent functionalitytest_validation_agent_service()- Test validation agent functionalitytest_task_planner_service()- Test task planning functionality
Integration Tests
Agent Communication Tests (backend/tests/integration/test_agent_communication.py)
test_inter_agent_messaging()- Test message passing between agentstest_communication_logging()- Test communication persistencetest_communication_bus_functionality()- Test communication bustest_agent_discovery_and_selection()- Test agent discovery process
End-to-End Orchestration Tests (backend/tests/integration/test_orchestration_e2e.py)
test_simple_research_task()- Test single research agent tasktest_multi_agent_synthesis()- Test research + synthesis workflowtest_validation_workflow()- Test research + synthesis + validationtest_complex_query_decomposition()- Test task planner functionalitytest_orchestration_error_handling()- Test error propagation and recovery
Database Integration Tests (backend/tests/integration/test_agent_database.py)
test_agent_crud_operations()- Test agent CRUD through databasetest_orchestration_persistence()- Test orchestration data persistencetest_agent_session_tracking()- Test session data integritytest_communication_log_storage()- Test communication log persistence
E2E Tests
Frontend Integration Tests (backend/tests/e2e/test_agent_ui.py)
test_agent_registration_flow()- Test agent registration through UItest_orchestration_creation_flow()- Test orchestration creation through UItest_real_time_orchestration_monitoring()- Test WebSocket orchestration updatestest_agent_communication_visualization()- Test communication view
API Integration Tests (backend/tests/e2e/test_agent_api.py)
test_agent_management_api()- Test all agent management endpointstest_orchestration_api()- Test all orchestration endpointstest_communication_api()- Test communication endpointstest_agent_orchestration_full_workflow()- Test complete workflow through API
Performance Tests
Load Testing (backend/tests/performance/test_agent_performance.py)
test_concurrent_orchestrations()- Test multiple orchestrationstest_agent_communication_throughput()- Test message throughputtest_large_scale_agent_registration()- Test agent registry performancetest_orchestration_memory_usage()- Test memory consumption during orchestration
Success Criteria & Milestones
Milestone 1: Core Infrastructure (Week 1-2)
Success Criteria:
- All database tables created and migrated
- All models implemented with proper relationships
- All schemas defined with validation
- Basic agent registry service functional
- Atomic tests passing (100% coverage)
Deliverables:
- Database migration scripts
- Model classes with relationships
- Pydantic schemas
- Basic agent registry service
- Atomic test suite
Milestone 2: Agent Framework (Week 3-4)
Success Criteria:
- Agent registration and discovery working
- Basic orchestration service implemented
- Agent communication framework functional
- Unit tests passing (90%+ coverage)
- Agent lifecycle management working
Deliverables:
- Complete agent registry service
- Orchestration service with basic planning
- Agent communication service
- Unit test suite
- Agent lifecycle management
Milestone 3: Specialized Agents (Week 5-6)
Success Criteria:
- Research agent implemented and functional
- Synthesis agent implemented and functional
- Validation agent implemented and functional
- Task planner agent implemented and functional
- Integration tests passing
Deliverables:
- Four specialized agent services
- Agent capability framework
- Integration test suite
- Agent performance optimizations
Milestone 4: API & Communication (Week 7-8)
Success Criteria:
- All REST API endpoints implemented
- Agent communication bus fully functional
- WebSocket support for real-time updates
- API integration tests passing
- Inter-agent messaging reliable
Deliverables:
- Complete REST API for agents and orchestrations
- WebSocket integration
- Communication bus implementation
- API documentation
- Integration test suite
Milestone 5: Frontend Integration (Week 9-10)
Success Criteria:
- Agent management interface functional
- Orchestration dashboard implemented
- Real-time orchestration monitoring working
- Agent communication visualization complete
- E2E tests passing
Deliverables:
- Complete React components for agent management
- Orchestration dashboard with real-time updates
- Agent communication visualization
- Enhanced search interface
- E2E test suite
Milestone 6: Production Readiness (Week 11-12)
Success Criteria:
- Performance tests passing
- Error handling and recovery implemented
- Documentation complete
- Security review passed
- Load testing successful
Deliverables:
- Performance test suite
- Error handling framework
- Complete documentation
- Security audit results
- Load testing reports
Risk Assessment & Mitigation
High Risks
-
Inter-agent communication complexity
- Mitigation: Start with simple message passing, iterate to complex protocols
-
Performance impact of orchestration overhead
- Mitigation: Implement async processing, add performance monitoring
-
Agent state management complexity
- Mitigation: Use proven state management patterns, implement comprehensive logging
Medium Risks
-
Database performance with complex queries
- Mitigation: Implement proper indexing, consider query optimization
-
Frontend complexity for real-time updates
- Mitigation: Use established WebSocket patterns, implement fallback mechanisms
Low Risks
- API endpoint complexity
- Mitigation: Follow existing patterns, implement comprehensive testing
Dependencies
Internal Dependencies
- Existing user authentication system
- Current RAG pipeline services
- Database infrastructure
- Frontend framework
External Dependencies
- PostgreSQL for orchestration data
- WebSocket support for real-time updates
- Message queue for agent communication (consider Redis/RabbitMQ)
Post-Epic Considerations
Future Enhancements
- Agent learning and adaptation
- Dynamic agent deployment
- Agent marketplace/plugin system
- Advanced orchestration patterns (DAG workflows)
- Agent performance analytics
Technical Debt
- Consider microservice architecture for agents
- Implement proper agent versioning
- Add comprehensive monitoring and observability
- Consider event sourcing for orchestration history
Definition of Done
Epic-Level DoD
- All user stories completed and accepted
- All tests passing (atomic, unit, integration, E2E, performance)
- Documentation complete and reviewed
- Security review completed
- Performance benchmarks met
- Production deployment successful
- User acceptance testing completed
Story-Level DoD
- Feature implemented according to specifications
- Unit tests written and passing
- Integration tests written and passing
- Code reviewed and approved
- Documentation updated
- Database migrations tested
- API endpoints tested
- Frontend components tested