Skip to content

基于BERT的预训练语言模型实现,分为两步:预训练和微调。目前已包括BERT、Roberta、ALbert三个模型,且皆可支持Whole Word Mask模式。

Notifications You must be signed in to change notification settings

maopucheng/Language_Understanding_based_BERT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Language_Understanding_based_BERT

适用于中文领域的基于BERT的预训练语言模型实现,分为两步:预训练和微调。目前已包括BERT、Roberta、ALbert三个模型,且皆可支持Whole Word Mask模式。

1.项目驱动

本着应用于工业生产的需要,想集成目前业界先进的预训练语言模型,并提供预训练和微调方法以此为用户提供一个端到端的预训练+微调框架。

2.开放模型

领域 模型配置 下载地址
法律 bert_base torch版本:
刑事领域:[下载地址](链接:https://pan.baidu.com/s/1NQ0qBXyS50jaU2mJ2j9qgw
提取码:kd1q)
民事领域:[下载地址](链接:https://pan.baidu.com/s/12tIjLx4BhDcKc4Pj4ItePg
提取码:rc8p)
DistillBERT(通用领域-蒸馏模型) roberta_wwm_large->roberta_wwm_base tf版本:[下载地址](链接:https://pan.baidu.com/s/1_oizvXxI1m3L2HsrhiHOOA
提取码:gqbd)
ELECTRA(通用领域-对抗学习模型) bert_tiny tf版本:下载地址

3.模型概述

3.1法律预训练模型

法律领域的预训练模型包括两个子模型:民事领域预训练模型和刑事领域预训练模型,基于bert-base配置进行训练。

预训练语料来源于中国裁判文书网整理的民事领域和刑事领域的裁判文书(89G),其中民事领域文书数量为2500万篇,刑事领域则为900万篇。

3.2DistillBERT:通用领域-蒸馏模型

该模型的具体细节可以参考this paper

基于两步走策略训练该模型:

step1:使用roberta_ext_wwm_large模型来获取所有训练示例中的token输出;

step2:使用上述输出来初始化roberta_ext_wwm_base模型的权重,继而继续训练。

预训练语料包括baike_qa2019, news2016_zh, webtext_2019, wiki_zh四个领域。

模型表现(准确率):

Classification

Model AFQMC CMNLI TNEWS LCQMC
roberta-wwm-ext-base 74.04% 80.51% 56.94% 86.5%
roberta-wwm-ext-base-distill 74.44% 81.1% 57.6% 87.2%

SQUAD

Model CMRC2018 dev(F1/EM)
roberta-wwm-ext-base 84.72%/65.24%
roberta-wwm-ext-base-distill 85.2%/65.20%

3.3ELECTRA:通用领域-对抗学习模型

模型具体细节参考this paper

这是我觉得字BERT面世以来最有意义的一次改进,引入CV领域的类GAN机制,利用discriminator与generator来训练模型。在训练方面仅使用了相当于1/4的bert算力。

开源模型包括discriminator与generator两个模型。

模型表现:

ELECTRA模型性能对比

4.模型加载

1.可以使用TextClassifier_BERTTextSim_cn_finetune两个项目加载上述模型。

2.使用bert4keras加载。

3.使用HuggingFace的Transformers加载。

5.TODO

  • 开源更多领域的预训练模型

  • 性能对比

About

基于BERT的预训练语言模型实现,分为两步:预训练和微调。目前已包括BERT、Roberta、ALbert三个模型,且皆可支持Whole Word Mask模式。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.5%
  • Jupyter Notebook 9.9%
  • Shell 0.6%