Pytorch implementation of the paper Super-resolution 3D Human Shape from a Single Low-resolution Image accepted at ECCV 2022. Note that the code of this repo is heavily based on PIFU. We thank the authors for their great job!
Create a conda environment from environment.yml file:
conda env create -f environment.yml
The first line of the yml file sets the new environment's name.
- Download T-Human2.0
- Process the .obj file to make the mesh watertight with the Fast Winding Number algorithm
- Render the training dataset following PIFU
- For Testing set,create two folders and named "mask_final" the folder that contains the mask of the image and "image_final" the folder that contains the RGB input images.
$ python train_SuRS.py --freq_save_ply 25 --residual --dataroot {path_to_input_data} --results_path {path_to_outdir} --random_flip --random_trans --random_scale --num_samples 50000 --threshold 0.05 --b_min -0.5 -0.5 -0.5 --b_max 0.5 0.5 0.5 --sigma 0.06 --resolution 512 --loadSize {input_image_size * 2}
$ python eval_SuRS.py --freq_save_ply 25 --residual --dataroot {path_to_input_data} --loadSize {input_image_size * 2} --results_path {path_to_outdir} --num_samples 50000 --threshold 0.05 --num_threads 6 --resolution 512 --load_netG_checkpoint_path {path_to_checkpoints}/netG_epoch_12 --b_min -0.5 -0.5 -0.5 --b_max 0.5 0.5 0.5
If you find the code useful in your research, please consider citing the paper.
@inproceedings{pesavento2022super,
title={Super-Resolution 3D Human Shape from a Single Low-Resolution Image},
author={Pesavento, Marco and Volino, Marco and Hilton, Adrian},
booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part II},
pages={447--464},
year={2022},
organization={Springer}
}
If you meet any problems, please contact:
- Marco Pesavento: m.pesavento@surrey.ac.uk
This research was supported by UKRI EPSRC Platform Grant EP/P022529/1 and it made use of time on Tier 2 HPC facility JADE2, funded by EPSRC (EP/T022205/1).