This repository contains the code to run the experiments present in this paper. The code here is frozen to what it was when we originally wrote the paper. If you're interested in using LIME, check out this repository, where we have packaged it up, improved the code quality, added visualizations and other improvements.
Running the commands below should be enough to get all of the results. You need specific versions python, sklearn, numpy, scipy. Install requirements in a virtualenv using:
pip install -r requirements.txt
If we forgot something, please email the first author.
-
DATASET -> 'multi_polarity_books', 'multi_polarity_kitchen', 'multi_polarity_dvd', 'multi_polarity_kitchen'
-
ALGORITHM -> 'l1logreg', 'tree'
-
EXPLAINER -> 'lime', 'parzen', 'greedy' or 'random'
python evaluate_explanations.py --dataset DATASET --algorithm ALGORITHM --explainer EXPLAINER
-
DATASET -> 'multi_polarity_books', 'multi_polarity_kitchen', 'multi_polarity_dvd', 'multi_polarity_kitchen'
-
ALGORITHM -> 'logreg', 'random_forest', 'svm', 'tree' or 'embforest', although you would need to set up word2vec for embforest
python data_trusting.py -d DATASET -a ALGORITHM -k 10 -u .25 -r NUM_ROUNDS
-
NUM_ROUNDS -> Desired number of rounds
-
DATASET -> 'multi_polarity_books', 'multi_polarity_kitchen', 'multi_polarity_dvd', 'multi_polarity_kitchen'
-
PICK -> 'submodular' or 'random' Run the following with the desired number of rounds:
mkdir out_comparing python generate_data_for_compare_classifiers.py -d DATASET -o out_comparing/ -k 10 -r NUM_ROUNDS python compare_classifiers.py -d DATASET -o out_comparing/ -k 10 -n 10 -p PICK
Available here
I got them from here