Skip to content

maroofmf/image_splicing_ICT

Repository files navigation

Deep Matching and Validation Network

An End-to-End Solution to Constrained Image Splicing Localization and Detection

The provided python2 implementation of deep matching and validation network using the Keras deep neural network with the Theano backend. This repo is tested w.r.t. the following dependent libs. Libs of other versions are not guaranteed to work compatibly with the provided code.

Python

Matrix

  • numpy 1.12.1
  • scipy 0.19.0

Deep neural network

Parallel processing

Image I/O dependency

Plot dependency

  • matplotlib 1.5.1

Directory Structure

  • config/
    • 'keras.json': a sample keras.json config with the Theano backend.
  • data/
    • paired_CASIA_ids.csv: defines the paired CASIA2 dataset
    • README.md: step-by-step instruction to prepare CASIA2 dataset
    • small/: contains 40 small RGB images from CASIA2
  • expt/
    • test_on_paired_casia/: contains DMVN prediction results on the paired CASIA2 dataset
  • lib/
    • keras_1.2.0/: Keras lib
    • dmvn/: DMVN lib
  • model/
    • dmvn_end_to_end.h5: pretrained DMVN model
  • dmvn_example.ipynb: ipython notebook of using DMVN to perform image splicing localization and detection using images from data/small/
  • dmvn_on_paired_casia.ipynb: ipython notebook of testing DMVN performance on the paired CASIA2 dataset.
  • README.md: the current file.

Usage

Below is a simple code snippet of using the DMVN model to perform splicing localizaiton and detection on a pair of (probe, donor) images.

# load DMVN model and image preprocess
from utils import preprocess_images
from core import create_DMVN_model

# create an end-to-end DMVN model
dmvn_end_to_end = create_DMVN_model()

# load two a DMVN sample of two images
Xp, Xd = preprocess_images( [ probe_file, donor_file ] )
X = { 'world' : Xd, 'probe' : Xp }

# splicing localization and detection via DMVN
pred_masks, pred_probs = dmvn_end_to_end.predict( X )
donor_mask, probe_mask = pred_masks[0]
splicing_prob = pred_probs.ravel()[1]

Contact

Dr. Yue Wu

Email: yue_wu@isi.edu

Affiliation: USC Information Sciences Institute

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published