Skip to content

Python OSS library that provides vid2vid pipeline by using Hugging Face's diffusers.

License

Notifications You must be signed in to change notification settings

masaishi/VidDiffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🎥 VidDiffusion

VidDiffusion is a Python library that provides vid2vid pipeline by using Hugging Face's diffusers.

Show some works generated by VidDiffusion:

Openjourney V4

woman_walks_sd2_fantasy_067.mov

Anime style

anime.mov

Original Video: https://mixkit.co/free-stock-video/girl-dancing-with-her-headphones-while-taking-a-walk-4823/

Sharing Your Work

Although it is not required, we would appreciate if you could share your generated videos and the configurations you used on SNS, etc. Please include the GitHub URL of this library in your post: VidDiffusion

Also, please post config values you used to generate the video by instance.show_config(). I hope we can all find the best value and produce great videos!

Installation

To install the library, run the following commands:

export HUGGING_FACE_HUB_TOKEN=your_hf_auth_token
pip install --upgrade transformers diffusers
pip install viddiffusion

VidDiffusion on PyPI

Usage

First, import the library:

from viddiffusion import VidDiffusionPipeline

Next, create a configuration dictionary and initialize the pipeline:

config = {
	'pretrained_model_name_or_path': 'your_pretrained_model_name_or_path',
	'hf_auth_token': 'your_hf_auth_token', #Optional

	'input_video_path': 'your_input_video_path',
	'output_video_path': 'your_output_video_path'
}
vid_pipe = VidDiffusionPipeline(config)

Optionally, you can change the path of temp save directory and other parameters:

vid_pipe.set_config({
	'init_image_dir': './vid_temp/init',
	'output_image_dir': './vid_temp/output',

	'fps': 20,
	'end_time': 5.0,

	'prompt': 'Fantasy, dynamic, cinamatic, cinematic light, hyperrealism',
	'negative_prompt': 'deformed, out of focus, blurry, low resolution, low quality',
})
vid_pipe.show_config()

Finally, apply the diffusion model to the video:

vid_pipe.vid2vid()

Configuration:

Required parameters:

  • pretrained_model_name_or_path: The name or path of the pretrained diffusion model to use. The model must be a Hugging Face model. The model can be a local path or a model name from the Hugging Face model hub. E.g. pretrained_model_name_or_path = 'stabilityai/stable-diffusion-2'
  • input_video_path: The path to the input video file. E.g. input_video_path = 'input_video.mp4'
  • output_video_path: The path to the output video file. E.g. output_video_path = 'output_video.mp4'

Optional parameters:

  • huggingface parameters:

    • hf_auth_token: Hugging Face auth token. Default: None.
  • Folder parameters:

    • init_image_dir: Path to images separated from the video directory. Default: None.
    • output_image_dir: Path to regenerated images directory. Default: /tmp/viddiffusion.
  • Video parameters:

    • fps: FPS of output video. Default: fps of input video.
    • duration: Duration of output video. Default: duration of input video.
    • start_time: Start time of output video. Default: 0.
    • end_time: End time of output video. Default: duration of input video.
  • Diffusion parameters:

    • custom_pipeline: Custom pipeline. Default: lpw_stable_diffusion.
    • torch_dtype: Torch dtype. Default: torch.float.
    • safety_checker: Safety checker. Callable. Default: None.
    • image_size: Image size. Default: 512 * 512 = 262144.
  • Prompt parameters:

    • prompt: Prompt. Default: 'Cyberpunk style, intricate details, high-quality'
    • negative_prompt: Negative prompt. Default: 'Low-quality, blurry, pixelated, low-resolution'
  • Scheduler parameters:

    • scheduler: Scheduler. Default: DPMSolverMultistepScheduler.
    • beta_start: Beta start. Default: 0.00085 * 0.75.
    • beta_end: Beta end. Default: 0.012 * 0.75.
    • num_train_timesteps: Number of train timesteps. Default: int(1000 * 0.75).
    • blend_alph: Blend alph. Default: 0.15.
    • blend_decay_rate: Blend decay rate. Default: 0.997.
    • strength: Strength. Default: 0.65.
    • num_inference_steps: Number of inference steps. Default: 30.
    • guidance_scale: Guidance scale. Default: 7.5.
    • seed: Seed for generator. Default: 2023.
  • Other parameters:

    • preprocess_image: Preprocess image. Default: lambda image: image.

How to Improve Video Quality

This library's feature is using generated image one frame before and after the current frame to improve video quality. This feature is enabled by default. I guess this feature is good for videos that have a lot of motion.

Parameters to change to improve video quality

  • scheduler : Try various scheduler such as DPMSolverMultistepScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, PNDMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler.

  • beta_start : 0.00085 * 0.65~0.75 is good, but I don't know the best value.

  • beta_end : 0.012 * 0.65~0.75 is good, but I don't know the best value.

  • num_train_timesteps : int(1000 * 0.65~0.75) is good, but I don't know the best value.

  • strength : 0.4 ~ 0.9 is good, but I don't know the best value.

  • guidance_scale : 5.0~14.0 is good, but I don't know the best value.

  • blend_alph : 0.03 ~ 0.28 is good, but I don't know the best value.

  • blend_decay_rate : 0.992 ~ 1.0 is good, but I don't know the best value.

  • prompt : Try various prompt such as 'Cyberpunk style, intricate details, high-quality', 'Fantasy, dynamic, cinamatic, cinematic light, hyperrealism', 'Cyberpunk, cyberpunk style, cyberpunk aesthetic, cyber punk city, cyberpunk cityscape, cyberpunk cityscape aesthetic, cyberpunk cityscape style, cyberpunk cityscape light, cyberpunk cityscape light aesthetic, cyberpunk cityscape light style, cyberpunk cityscape light

  • negative_prompt : Try various negative_prompt such as 'Low-quality, blurry, pixelated, low-resolution', 'deformed, out of focus, blurry, low resolution, low quality', 'Low-quality, blurry, pixelated, low-resolution, deformed, out of focus, blurry, low resolution, low quality'

  • preprocess_image : Try various preprocess_image function such as torchvision.

License

VidDiffusion is licensed under the Apache License 2.0.

Contributing

Contributions are welcome! Please feel free to submit a pull request or open an issue on the GitHub repository.

Contact

If you have any questions, please feel free to contact me. Twitter DM is best option for me

Citation

@misc{masaishi2023viddiffusion,
	title={VidDiffusion: Vid2Vid Diffuser Pipeline for Video Filter}, 
	author={Masamune Ishihara},
	year={2023},
	publisher = {GitHub},
	journal = {GitHub repository},
	howpublished = {\url{https://github.com/masaishi/VidDiffusion}}
}

About

Python OSS library that provides vid2vid pipeline by using Hugging Face's diffusers.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages