Skip to content

Commit

Permalink
0.37.0
Browse files Browse the repository at this point in the history
  • Loading branch information
matatonic committed Oct 1, 2024
1 parent b607e8e commit 0fdf839
Show file tree
Hide file tree
Showing 6 changed files with 202 additions and 41 deletions.
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ Can't decide which to use? See the [OpenVLM Leaderboard](https://huggingface.co/
- [X] [Mistral AI](https://huggingface.co/mistralai)
- - [X] [Pixtral-12B](https://huggingface.co/mistralai/Pixtral-12B-2409)
- [X] [mx262/MiniMonkey](https://huggingface.co/mx262/MiniMonkey)
- [X] [nvidia/NVLM-D-72B](https://huggingface.co/nvidia/NVLM-D-72B)
- [X] [omlab/omchat-v2.0-13B-single-beta_hf](https://huggingface.co/omlab/omchat-v2.0-13B-single-beta_hf) (alt docker)
- [X] [openbmb](https://huggingface.co/openbmb)
- - [X] [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) (video not supported yet)
Expand Down Expand Up @@ -157,6 +158,10 @@ If you can't find your favorite model, you can [open a new issue](https://github

## Recent updates

Version 0.37.0

- new model support: nvidia/NVLM-D-72B

Version 0.36.0

- new model support: BAAI/Emu3-Chat
Expand Down
155 changes: 155 additions & 0 deletions backend/nvlm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
from transformers import AutoTokenizer, AutoModel
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

from vision_qna import *

# nvidia/NVLM-D-72B

MAX_TILES = 6

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=MAX_TILES, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)

# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images


def load_image(image, input_size=448, max_num=MAX_TILES):
#image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values


class VisionQnA(VisionQnABase):
model_name: str = "nvlm"
format: str = "chatml"
vision_layers: List[str] = ["vision_model"]

def __init__(self, model_id: str, device: str, device_map: str = 'auto', extra_params = {}, format = None):
super().__init__(model_id, device, device_map, extra_params, format)

self.max_tiles = extra_params.get('max_tiles', MAX_TILES)

self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False, trust_remote_code=self.params.get('trust_remote_code', False))
self.model = AutoModel.from_pretrained(**self.params).eval()

self.eos_token = '<|im_end|>'
self.IMG_CONTEXT_TOKEN='<|vision_pad|>'
self.IMG_START_TOKEN = '<Image>' # <|vision_start|> ?
self.IMG_END_TOKEN = '<Image>' # <|vision_end|> ?
self.model.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.IMG_CONTEXT_TOKEN)

# bitsandbytes already moves the model to the device, so we don't need to do it again.
if not (extra_params.get('load_in_4bit', False) or extra_params.get('load_in_8bit', False)):
self.model = self.model.to(self.device)

self.loaded_banner()

async def stream_chat_with_images(self, request: ImageChatRequest) -> AsyncGenerator[str, None]:
images, prompt = await prompt_from_messages(request.messages, self.format)

if len(images) < 1:
pixel_values = None
else:
pixel_values = load_image(images[-1], max_num=self.max_tiles).to(self.model.dtype).cuda()

for num_patches in [pixel_values.shape[0]]:
tile_pos_identifiers = [f"<tile_{i}>" for i in range(1, num_patches)] + ["<tile_global_thumbnail>"]
image_tokens = ''
for tile_pos_identifier in tile_pos_identifiers:
image_tokens += tile_pos_identifier + self.IMG_CONTEXT_TOKEN * self.model.num_image_token
image_tokens = self.IMG_START_TOKEN + image_tokens + self.IMG_END_TOKEN
prompt = prompt.replace('<image>', image_tokens, 1)

model_inputs = self.tokenizer(prompt, return_tensors='pt')
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()

default_params = dict(
max_new_tokens=1024,
do_sample=False,
pad_token_id=self.tokenizer.eos_token_id,
)

params = self.get_generation_params(request, default_params)

del params['use_cache']

generation_kwargs = dict(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**params,
)

for new_text in threaded_streaming_generator(generate=self.model.generate, tokenizer=self.tokenizer, generation_kwargs=generation_kwargs):
end = new_text.find(self.eos_token)
if end == -1:
yield new_text
else:
yield new_text[:end]
break
1 change: 1 addition & 0 deletions model_conf_tests.json
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@
["mistralai/Pixtral-12B-2409"],
["mx262/MiniMonkey", "-A", "flash_attention_2", "--load-in-4bit"],
["mx262/MiniMonkey", "-A", "flash_attention_2"],
["nvidia/NVLM-D-72B", "-A", "flash_attention_2", "--load-in-4bit"],
["openbmb/MiniCPM-V-2_6-int4", "-A", "flash_attention_2", "--device-map", "cuda:0"],
["openbmb/MiniCPM-V-2_6", "-A", "flash_attention_2", "--device-map", "cuda:0", "--load-in-4bit"],
["openbmb/MiniCPM-V-2_6", "-A", "flash_attention_2", "--device-map", "cuda:0"],
Expand Down
78 changes: 37 additions & 41 deletions test_api_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,11 +98,13 @@ def generate_response(image_url, prompt):
]}])

response = client.chat.completions.create(model=args.openai_model, messages=messages, **params)
completion_tokens = 0
answer = response.choices[0].message.content
return answer
if response.usage:
completion_tokens = response.usage.completion_tokens
return answer, completion_tokens

def generate_stream_response(image_url, prompt):

messages = [{ "role": "system", "content": [{ 'type': 'text', 'text': args.system_prompt }] }] if args.system_prompt else []
messages.extend([
{ "role": "user", "content": [
Expand All @@ -112,51 +114,45 @@ def generate_stream_response(image_url, prompt):

response = client.chat.completions.create(model=args.openai_model, messages=messages, **params, stream=True)
answer = ''
completion_tokens = 0
for chunk in response:
if chunk.choices[0].delta.content:
answer += chunk.choices[0].delta.content

return answer
if chunk.usage:
completion_tokens = chunk.usage.completion_tokens

return answer, completion_tokens

if True:
# XXX TODO: timeout
results = []
### Single round
timing = []

test_time = time.time()

# url tests
for name, url in urls.items():
answer = generate_response(url, "What is the subject of the image?")
def single_test(url, question, label, generator=generate_response):
tps_time = time.time()
answer, tok = generator(url, question)
tps_time = time.time() - tps_time
correct = name in answer.lower()
results.extend([correct])
if not correct:
print(f"{name}[url]: fail, got: {answer}")
if args.abort_on_fail:
break
print(f"{name}[{label}]: fail, got: {answer}")
#if args.abort_on_fail:
# break
else:
print(f"{name}[url]: pass{', got: ' + answer if args.verbose else ''}")
print(f"{name}[{label}]: pass{', got: ' + answer if args.verbose else ''}")
if tok > 1:
timing.extend([(tok, tps_time)])

data_url = data_url_from_url(url)
answer = generate_response(data_url, "What is the subject of the image?")
correct = name in answer.lower()
results.extend([correct])
if not correct:
print(f"{name}[data]: fail, got: {answer}")
if args.abort_on_fail:
break
else:
print(f"{name}[data]: pass{', got: ' + answer if args.verbose else ''}")
test_time = time.time()

answer = generate_stream_response(data_url, "What is the subject of the image?")
correct = name in answer.lower()
results.extend([correct])
if not correct:
print(f"{name}[data_stream]: fail, got: {answer}")
if args.abort_on_fail:
break
else:
print(f"{name}[data_stream]: pass{', got: ' + answer if args.verbose else ''}")
# url tests
for name, url in urls.items():
single_test(url, "What is the subject of the image?", "url", generate_response)

data_url = data_url_from_url(url)
single_test(data_url, "What is the subject of the image?", "data", generate_response)
single_test(data_url, "What is the subject of the image?", "data_stream", generate_stream_response)


## OCR tests
Expand All @@ -166,15 +162,7 @@ def generate_stream_response(image_url, prompt):
}
for name, question in quality_urls.items():
prompt, data_url = question
answer = generate_stream_response(data_url, prompt)
correct = name in answer.lower() or 'wal-mart' in answer.lower()
results.extend([correct])
if not correct:
print(f"{name}[quality]: fail, got: {answer}")
if args.abort_on_fail:
break
else:
print(f"{name}[quality]: pass{', got: ' + answer if args.verbose else ''}")
single_test(data_url, prompt, "quality", generate_stream_response)

# No image tests
no_image = {
Expand Down Expand Up @@ -204,5 +192,13 @@ def no_image_response(prompt):

result = all(results)
note = f'{results.count(True)}/{len(results)} tests passed.'
if timing:
tok_total, tim_total = 0, 0.0
for tok, tim in timing:
if tok > 1 and tim > 0:
tok_total += tok
tim_total += tim
if tim_total > 0.0:
note += f', ({tok_total}/{tim_total:0.1f}s) {tok_total/tim_total:0.1f} T/s'

print(f"test {green_pass if results else red_fail}, time: {test_time:.1f}s, {note}")
1 change: 1 addition & 0 deletions vision.sample.env
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,7 @@ HF_HUB_ENABLE_HF_TRANSFER=1
#CLI_COMMAND="python vision.py -m mistralai/Pixtral-12B-2409" # test pass✅, time: 16.0s, mem: 35.5GB, 13/13 tests passed (manual calc) 12.7 T/s
#CLI_COMMAND="python vision.py -m mx262/MiniMonkey -A flash_attention_2 --load-in-4bit" # test pass✅, time: 11.1s, mem: 13.9GB, 13/13 tests passed, (37/3.1s) 11.7 T/s
#CLI_COMMAND="python vision.py -m mx262/MiniMonkey -A flash_attention_2" # test pass✅, time: 10.0s, mem: 16.3GB, 13/13 tests passed, (37/2.8s) 13.0 T/s
#CLI_COMMAND="python vision.py -m nvidia/NVLM-D-72B -A flash_attention_2 --load-in-4bit" # test pass✅, time: 62.0s, mem: 56.7GB, 13/13 tests passed, (66/19.7s) 3.3 T/s
#CLI_COMMAND="python vision.py -m openbmb/MiniCPM-V-2_6-int4 -A flash_attention_2 --device-map cuda:0" # test pass✅, time: 19.0s, mem: 9.2GB, 13/13 tests passed, (93/5.2s) 18.0 T/s
#CLI_COMMAND="python vision.py -m openbmb/MiniCPM-V-2_6 -A flash_attention_2 --device-map cuda:0 --load-in-4bit" # test pass✅, time: 15.8s, mem: 9.5GB, 13/13 tests passed, (99/4.4s) 22.5 T/s
#CLI_COMMAND="python vision.py -m openbmb/MiniCPM-V-2_6 -A flash_attention_2 --device-map cuda:0" # test pass✅, time: 13.3s, mem: 18.8GB, 13/13 tests passed, (101/3.4s) 30.1 T/s
Expand Down
3 changes: 3 additions & 0 deletions vision_qna.py
Original file line number Diff line number Diff line change
Expand Up @@ -945,6 +945,9 @@ def guess_backend(model_name: str) -> str:
if 'florence' in model_id:
return 'florence'

if 'nvlm' in model_id:
return 'nvlm'

if 'internvl-chat' in model_id and '-v1-5' in model_id:
return 'internvl-chat-v1-5'

Expand Down

0 comments on commit 0fdf839

Please sign in to comment.