-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
matatonic
committed
Oct 1, 2024
1 parent
b607e8e
commit 0fdf839
Showing
6 changed files
with
202 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
from transformers import AutoTokenizer, AutoModel | ||
import torchvision.transforms as T | ||
from torchvision.transforms.functional import InterpolationMode | ||
|
||
from vision_qna import * | ||
|
||
# nvidia/NVLM-D-72B | ||
|
||
MAX_TILES = 6 | ||
|
||
IMAGENET_MEAN = (0.485, 0.456, 0.406) | ||
IMAGENET_STD = (0.229, 0.224, 0.225) | ||
|
||
def build_transform(input_size): | ||
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | ||
transform = T.Compose([ | ||
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | ||
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | ||
T.ToTensor(), | ||
T.Normalize(mean=MEAN, std=STD) | ||
]) | ||
return transform | ||
|
||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | ||
best_ratio_diff = float('inf') | ||
best_ratio = (1, 1) | ||
area = width * height | ||
for ratio in target_ratios: | ||
target_aspect_ratio = ratio[0] / ratio[1] | ||
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | ||
if ratio_diff < best_ratio_diff: | ||
best_ratio_diff = ratio_diff | ||
best_ratio = ratio | ||
elif ratio_diff == best_ratio_diff: | ||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | ||
best_ratio = ratio | ||
return best_ratio | ||
|
||
def dynamic_preprocess(image, min_num=1, max_num=MAX_TILES, image_size=448, use_thumbnail=False): | ||
orig_width, orig_height = image.size | ||
aspect_ratio = orig_width / orig_height | ||
|
||
# calculate the existing image aspect ratio | ||
target_ratios = set( | ||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | ||
i * j <= max_num and i * j >= min_num) | ||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | ||
|
||
# find the closest aspect ratio to the target | ||
target_aspect_ratio = find_closest_aspect_ratio( | ||
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | ||
|
||
# calculate the target width and height | ||
target_width = image_size * target_aspect_ratio[0] | ||
target_height = image_size * target_aspect_ratio[1] | ||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | ||
|
||
# resize the image | ||
resized_img = image.resize((target_width, target_height)) | ||
processed_images = [] | ||
for i in range(blocks): | ||
box = ( | ||
(i % (target_width // image_size)) * image_size, | ||
(i // (target_width // image_size)) * image_size, | ||
((i % (target_width // image_size)) + 1) * image_size, | ||
((i // (target_width // image_size)) + 1) * image_size | ||
) | ||
# split the image | ||
split_img = resized_img.crop(box) | ||
processed_images.append(split_img) | ||
assert len(processed_images) == blocks | ||
if use_thumbnail and len(processed_images) != 1: | ||
thumbnail_img = image.resize((image_size, image_size)) | ||
processed_images.append(thumbnail_img) | ||
return processed_images | ||
|
||
|
||
def load_image(image, input_size=448, max_num=MAX_TILES): | ||
#image = Image.open(image_file).convert('RGB') | ||
transform = build_transform(input_size=input_size) | ||
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | ||
pixel_values = [transform(image) for image in images] | ||
pixel_values = torch.stack(pixel_values) | ||
return pixel_values | ||
|
||
|
||
class VisionQnA(VisionQnABase): | ||
model_name: str = "nvlm" | ||
format: str = "chatml" | ||
vision_layers: List[str] = ["vision_model"] | ||
|
||
def __init__(self, model_id: str, device: str, device_map: str = 'auto', extra_params = {}, format = None): | ||
super().__init__(model_id, device, device_map, extra_params, format) | ||
|
||
self.max_tiles = extra_params.get('max_tiles', MAX_TILES) | ||
|
||
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False, trust_remote_code=self.params.get('trust_remote_code', False)) | ||
self.model = AutoModel.from_pretrained(**self.params).eval() | ||
|
||
self.eos_token = '<|im_end|>' | ||
self.IMG_CONTEXT_TOKEN='<|vision_pad|>' | ||
self.IMG_START_TOKEN = '<Image>' # <|vision_start|> ? | ||
self.IMG_END_TOKEN = '<Image>' # <|vision_end|> ? | ||
self.model.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.IMG_CONTEXT_TOKEN) | ||
|
||
# bitsandbytes already moves the model to the device, so we don't need to do it again. | ||
if not (extra_params.get('load_in_4bit', False) or extra_params.get('load_in_8bit', False)): | ||
self.model = self.model.to(self.device) | ||
|
||
self.loaded_banner() | ||
|
||
async def stream_chat_with_images(self, request: ImageChatRequest) -> AsyncGenerator[str, None]: | ||
images, prompt = await prompt_from_messages(request.messages, self.format) | ||
|
||
if len(images) < 1: | ||
pixel_values = None | ||
else: | ||
pixel_values = load_image(images[-1], max_num=self.max_tiles).to(self.model.dtype).cuda() | ||
|
||
for num_patches in [pixel_values.shape[0]]: | ||
tile_pos_identifiers = [f"<tile_{i}>" for i in range(1, num_patches)] + ["<tile_global_thumbnail>"] | ||
image_tokens = '' | ||
for tile_pos_identifier in tile_pos_identifiers: | ||
image_tokens += tile_pos_identifier + self.IMG_CONTEXT_TOKEN * self.model.num_image_token | ||
image_tokens = self.IMG_START_TOKEN + image_tokens + self.IMG_END_TOKEN | ||
prompt = prompt.replace('<image>', image_tokens, 1) | ||
|
||
model_inputs = self.tokenizer(prompt, return_tensors='pt') | ||
input_ids = model_inputs['input_ids'].cuda() | ||
attention_mask = model_inputs['attention_mask'].cuda() | ||
|
||
default_params = dict( | ||
max_new_tokens=1024, | ||
do_sample=False, | ||
pad_token_id=self.tokenizer.eos_token_id, | ||
) | ||
|
||
params = self.get_generation_params(request, default_params) | ||
|
||
del params['use_cache'] | ||
|
||
generation_kwargs = dict( | ||
pixel_values=pixel_values, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
**params, | ||
) | ||
|
||
for new_text in threaded_streaming_generator(generate=self.model.generate, tokenizer=self.tokenizer, generation_kwargs=generation_kwargs): | ||
end = new_text.find(self.eos_token) | ||
if end == -1: | ||
yield new_text | ||
else: | ||
yield new_text[:end] | ||
break |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters