Skip to content

Commit

Permalink
Fix non-forgetful inheritance
Browse files Browse the repository at this point in the history
  • Loading branch information
pi8027 authored and affeldt-aist committed Mar 11, 2021
1 parent 0fb2e04 commit c9cd6ac
Show file tree
Hide file tree
Showing 5 changed files with 1,020 additions and 594 deletions.
1 change: 1 addition & 0 deletions theories/derive.v
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Import nonforgetful_inheritance.Exports.

Local Open Scope ring_scope.
Local Open Scope classical_set_scope.
Expand Down
9 changes: 5 additions & 4 deletions theories/ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ Unset Printing Implicit Defensive.
Declare Scope ereal_scope.

Import Order.TTheory GRing.Theory Num.Theory.
Import nonforgetful_inheritance.Exports.

Local Open Scope ring_scope.

Expand Down Expand Up @@ -220,10 +221,10 @@ Notation "x < y <= z" := ((x < y) && (y <= z)) : ereal_scope.
Notation "x <= y < z" := ((x <= y) && (y < z)) : ereal_scope.
Notation "x < y < z" := ((x < y) && (y < z)) : ereal_scope.

Lemma lee_fin (R : numDomainType) (x y : R) : (x%:E <= y%:E) = (x <= y)%O.
Lemma lee_fin (R : numDomainType) (x y : R) : (x%:E <= y%:E) = (x <= y)%R.
Proof. by []. Qed.

Lemma lte_fin (R : numDomainType) (x y : R) : (x%:E < y%:E) = (x < y)%O.
Lemma lte_fin (R : numDomainType) (x y : R) : (x%:E < y%:E) = (x < y)%R.
Proof. by []. Qed.

Lemma lte_pinfty (R : realDomainType) (x : R) : x%:E < +oo.
Expand Down Expand Up @@ -668,10 +669,10 @@ Lemma le0R (x : {ereal R}) :
0%:E <= x -> (0 <= real_of_er(*TODO: coercion broken*) x)%R.
Proof. by case: x. Qed.

Lemma lee_tofin (r0 r1 : R) : (r0 <= r1)%O -> r0%:E <= r1%:E.
Lemma lee_tofin (r0 r1 : R) : (r0 <= r1)%R -> r0%:E <= r1%:E.
Proof. by []. Qed.

Lemma lte_tofin (r0 r1 : R) : (r0 < r1)%O -> r0%:E < r1%:E.
Lemma lte_tofin (r0 r1 : R) : (r0 < r1)%R -> r0%:E < r1%:E.
Proof. by []. Qed.

End ERealOrderTheory.
Expand Down
Loading

0 comments on commit c9cd6ac

Please sign in to comment.