I wrote a cli to streamline my research workflow. It allows me to
search, download, and inspect papers and more through the semantic
scholar API. ss.py
plays nicely with tools like jq
, jtbl
, and
fold
. I'll show some common uses here:
$ git clone https://github.com/mattf1n/ss.git # Clone the repo
$ ln ss/ss.py .local/bin/ss # copy the script to a location on my PATH.
$ chmod +x .local/bin/ss # make it executable.
$ ss --help
usage: ss [-h] {search,dl,citations,paper,id,author} ...
positional arguments:
{search,dl,citations,paper,id,author}
optional arguments:
-h, --help show this help message and exit
$ ss search "Matthew Finlayson" | jtbl # search my papers and display them in a table
╒══════╤═════════════════════════╤════════╤═════════════════════════╕
│ id │ title │ year │ authors │
╞══════╪═════════════════════════╪════════╪═════════════════════════╡
│ 75be │ Donald Trump and vaccin │ 2020 │ M. Hornsey (5048), M. F │
│ │ ation: The effect of po │ │ inlayson (1529), Gabrie │
│ │ litical identity, consp │ │ lle Chatwood (1581), C. │
│ │ iracist ideation and pr │ │ Begeny (4302) │
│ │ esidential tweets on va │ │ │
│ │ ccine hesitancy │ │ │
├──────┼─────────────────────────┼────────┼─────────────────────────┤
│ 488d │ Causal Analysis of Synt │ 2021 │ Matthew Finlayson (1580 │
│ │ actic Agreement Mechani │ │ ), Aaron Mueller (4935) │
│ │ sms in Neural Language │ │ , S. Shieber (1692), Se │
│ │ Models │ │ bastian Gehrmann (3159) │
│ │ │ │ , Tal Linzen (2467), Yo │
│ │ │ │ natan Belinkov (2083) │
╘══════╧═════════════════════════╧════════╧═════════════════════════╛
List my papers using the authorId
1580 found above.
"Matthew Finlayson"
would work as well after this search.
$ ss author 1580 | jtbl
╒══════╤═════════════════════════╤════════╤═════════════════════════╕
│ id │ title │ year │ authors │
╞══════╪═════════════════════════╪════════╪═════════════════════════╡
│ cb16 │ What Makes Instruction │ 2022 │ Matthew Finlayson (1580 │
│ │ Learning Hard? An Inves │ │ ), Kyle Richardson (466 │
│ │ tigation and a New Chal │ │ 6), Ashish Sabharwal (4 │
│ │ lenge in a Synthetic En │ │ 822), Peter Clark (4832 │
│ │ vironment │ │ ) │
├──────┼─────────────────────────┼────────┼─────────────────────────┤
│ 488d │ Causal Analysis of Synt │ 2021 │ Matthew Finlayson (1580 │
│ │ actic Agreement Mechani │ │ ), Aaron Mueller (4935) │
│ │ sms in Neural Language │ │ , S. Shieber (1692), Se │
│ │ Models │ │ bastian Gehrmann (3159) │
│ │ │ │ , Tal Linzen (2467), Yo │
│ │ │ │ natan Belinkov (2083) │
╘══════╧═════════════════════════╧════════╧═════════════════════════╛
You can look at citations and traverse the citation graph.
$ ss citations cb16 | jtbl
╒══════╤═════════════════════════╤════════╤═════════════════════════╕
│ id │ title │ year │ authors │
╞══════╪═════════════════════════╪════════╪═════════════════════════╡
│ e46f │ Simplicity Bias in Tran │ 2022 │ S. Bhattamishra (9295), │
│ │ sformers and their Abil │ │ Arkil Patel (1443), Va │
│ │ ity to Learn Sparse Boo │ │ run Kanade (2080), P. B │
│ │ lean Functions │ │ lunsom (1685) │
├──────┼─────────────────────────┼────────┼─────────────────────────┤
│ 82cd │ Learning Instructions w │ 2022 │ Yuxian Gu (2116), Pei K │
│ │ ith Unlabeled Data for │ │ e (1886), Xiaoyan Zhu ( │
│ │ Zero-Shot Cross-Task Ge │ │ 1452), Minlie Huang (17 │
│ │ neralization │ │ 30) │
╘══════╧═════════════════════════╧════════╧═════════════════════════╛
You can get paper info by ID as well and extract things like bibtex and
abstracts with jq
.
$ ss paper cb16 | jq -r '.citationStyles.bibtex, .abstract' | fold -s
@['JournalArticle', 'Conference']{Finlayson2022WhatMI,
author = {Matthew Finlayson and Kyle Richardson and Ashish Sabharwal and Peter
Clark},
booktitle = {Conference on Empirical Methods in Natural Language Processing},
pages = {414-426},
title = {What Makes Instruction Learning Hard? An Investigation and a New
Challenge in a Synthetic Environment},
year = {2022}
}
The instruction learning paradigm—where a model learns to perform new tasks
from task descriptions alone—has become popular in research on general-purpose
models. The capabilities of large transformer models as instruction learners,
however, remain poorly understood. We use a controlled synthetic environment to
...
Downloading is easy as well!
$ ss dl cb16
/Users/matthewf/papers/Finlayson2022WhatMI.pdf
Already downloaded.