Skip to content

matwilso/object_collections

Repository files navigation

Manipulating Object Collections Using Grounded State Representations

Code to accompany our paper.

⚠️ Disclaimer This is a research codebase. My hope is that it will be useful in the case that a reader of the paper wants to dig more into the specific details and implementation. I have cleaned some things up a bit, but the code is still a bit messy. This was designed to try out some ideas and not necessarily to be a good jumping off point for future work.

Contents:

Codebase Outline

  • sl_main.py - Script used to train SL models
  • rl_main.py - Script used to train RL models
  • eval_main.py - Script used to evaluate policies in simulation

object_collections/

  • define_flags.py: Command line arg parsing. Everything gets shoved into a dictionary called FLAGS. It's super hacky, it's great.
  • envs/: simulation environment we use to train in, following OpenAI Gym API.
    • object_env.py: main file for env logic, with actions, resets, rewards, domain randomization, etc.
    • base.py: base class file with minimal stuff
    • utils/: utils
  • rl/: RL training code, model definitions, algos, losses
    • agents.py: Scripted policy logic and SAC losses
    • data.py: Data utils for reading and writing rollouts to file and using TensorFlow data API with TFRecords
    • encoders.py: Full encoder definitions that take state/image and encode them (our full method called DYN and an Autoencoder approach called VAE)
    • models.py: Models used within the encoders
    • rollers.py: Logic to do rollouts in parallel
    • trainer.py: Main logic to run training loop for RL
  • scripts/: Misc scripts for doing some things, including real world evaluations. Require ROS/Baxter/MoveIt knowledge, not likely very useful.
  • sl/: Supervised learning code, losses
    • aux_losses.py: For training MDN and Autoencoder heads
    • building_blocks.py: CNN archs, transformer/MHDPA implementation, MDN head (lower-level blocks)
    • trainer.py - Supervised learning training logic (main control loop)
    • viz.py - Code for visualizing MDNs, rollouts, etc. Some gems, but overall not that happy with this code.

Notes

  • I call the Autoencoder model VAE in the code, sorry for any confusions this causes
  • I parse all CMD line args into a dictionary called FLAGS which gets passed everywhere.
  • Some of the rewards processing is pretty hacky, so sorry about that.

Installation

This requires installing Mujoco and mujoco_py. Our python dependencies are all listed in the requirements.txt file. Installation can be a pain.

Commands executed to run training

(Arguments that are not passed in via command line default to the values in the object_collections/define_flags.py.)

1. Generate data

./rl_main.py --agent=scripted --dump_rollouts=1 --run_rl_optim=0 --goal_conditioned=False --debug=1 --rollout_data_path data/rollouts --num_envs=8 --use_embed=False --horizon=65 --max_episode_steps=65 --use_canonical=False

2. Train supervised learning model(s)

These reach 75k iterations (what we use in the paper) in about 15 hours (on my single i7 + NVIDIA-1080Ti).

# FULL:
 ./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=gn --use_image=False --phi_noise=0.0 

# MLP:
./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=mlp --use_image=False --phi_noise=0.0 --mlp_hidden_size=256 

# CNN:
./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=cnn_gn --phi_noise=0.1 

# CNN w/o MHDPA:
 ./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=cnn --phi_noise=0.1

# Only L STATE (GN, same for CNN):
./sl_main.py lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=gn --use_image=False --phi_noise=0.0 --dyn_weight=0.0

# Only L DYN (GN, same for CNN)
./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=gn --use_image=False --phi_noise=0.0 --mdn_weight=0.0 

# GNN Autoencoder:
./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=gnvae --phi_noise=0.0 --use_canonical=True

# CNN Autoencoder:
./sl_main.py --lr=3e-4 --bs=512 --goal_conditioned=False --cnn_gn=cnn_gn_vae --phi_noise=0.1 --use_canonical=True

2.b. Manually splice the trained models together

You have to train a state-based and image-based model and then rename some of the weights and place them in a single checkpoint so that they can be loaded by the RL trainer.

See rn_vars.py.

3. Train reinforcement learning policies

These reach 10k iterations (what we use in the paper) in about 10 hours.

# FULL:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024  --phi_noise=0.1 --is_training=False --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn --value_goal=True --goal_threshold=0.005

# MLP:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn_mlp --goal_threshold=0.005


# CNN w/o MHDPA:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn --goal_threshold=0.005


# Autoencoder:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn_vae --goal_threshold=0.2

# Only L STATE:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn --goal_threshold=0.04


# Only L DYN:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn --goal_threshold=0.004

# Image-based:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn --goal_threshold=0.005 --value_goal=False 

# No AAC:
./rl_main.py --goal_conditioned=True --lr=1e-3 --bs=1024 --phi_noise=0.1 --is_training=False  --goal_conditioned=True --load_path $PATH_TO_SL_MODEL_CKPT --cnn_gn=cnn_gn --goal_threshold=0.005 --value_goal=False --aac=False

4. Evaluate in sim

# FULL 
./eval_main.py --goal_conditioned=True --num_envs=1 --eval_n=100 --phi_noise=0.0 --is_training=False --cnn_gn=cnn_gn --goal_conditioned=True --load_path $PATH_TO_RL_CKPT --aac=True --value_goal=True  --play=True  --render=1 --reset_mode=cluster --suffix=full

Acknowledgements

Some code in this repo is borrowed from:

About

Code to accompany our CoRL 2019 paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages