Skip to content

Commit

Permalink
more idiomatic reasoning in Displayed.Limits.BinProduct
Browse files Browse the repository at this point in the history
  • Loading branch information
maxsnew committed Sep 20, 2024
1 parent 5b08502 commit 2141871
Showing 1 changed file with 34 additions and 35 deletions.
69 changes: 34 additions & 35 deletions Cubical/Categories/Displayed/Limits/BinProduct.agda
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,6 @@ module _ {C : Category ℓC ℓC'}{c c' : C .ob}

open CartesianOver
open UniversalElementᴰ
open R

module _ {cᴰ : Cᴰ.ob[ c ]}{c'ᴰ : Cᴰ.ob[ c' ]}
(lift-π₁ : CartesianOver Cᴰ cᴰ c×c'.π₁)
Expand Down Expand Up @@ -212,10 +211,10 @@ module _ {C : Category ℓC ℓC'}{c c' : C .ob}
π₂⋆π₂* = ϕ[π₁x]∧ψ[π₂x].π₂ Cᴰ.⋆ᴰ B*.π₂*

π₁ᴰ : Cᴰ.Hom[ c×c'.π₁ ][ ϕ[π₁x]∧ψ[π₂x].vert , ϕ ]
π₁ᴰ = reind (C .⋆IdL _) π₁⋆π₁*
π₁ᴰ = R.reind (C .⋆IdL _) π₁⋆π₁*

π₂ᴰ : Cᴰ.Hom[ c×c'.π₂ ][ ϕ[π₁x]∧ψ[π₂x].vert , ψ ]
π₂ᴰ = reind (C .⋆IdL _) π₂⋆π₂*
π₂ᴰ = R.reind (C .⋆IdL _) π₂⋆π₂*

VerticalBinProdsAt→LiftedBinProduct : LiftedBinProduct Cᴰ prod (ϕ , ψ)
VerticalBinProdsAt→LiftedBinProduct .vertexᴰ = ϕ[π₁x]∧ψ[π₂x].vert
Expand All @@ -225,16 +224,16 @@ module _ {C : Category ℓC ℓC'}{c c' : C .ob}
{x = Ξ} {xᴰ = θ} {f = h} .equiv-proof (fᴰ , gᴰ) = uniqueExists
hᴰ
(≡-×
(rectify (≡out (≡in aaa₁ ∙
sym (≡in (Cᴰ.⋆Assocᴰ _ _ _)) ∙
≡in bbb₁ ∙
≡in ccc₁ ∙
≡in (fᴰ* .fst .snd))))
(rectify (≡out (≡in aaa₂ ∙
sym (≡in (Cᴰ.⋆Assocᴰ _ _ _)) ∙
≡in bbb₂ ∙
≡in ccc₂ ∙
≡in (gᴰ* .fst .snd)))))
(R.rectify (R.≡out (R.≡in aaa₁ ∙
sym (R.⋆Assoc _ _ _) ∙
R.≡in bbb₁ ∙
R.≡in ccc₁ ∙
R.≡in (fᴰ* .fst .snd))))
(R.rectify (R.≡out (R.≡in aaa₂ ∙
sym (R.⋆Assoc _ _ _) ∙
R.≡in bbb₂ ∙
R.≡in ccc₂ ∙
R.≡in (gᴰ* .fst .snd)))))
(λ _ isSet× Cᴰ.isSetHomᴰ Cᴰ.isSetHomᴰ _ _)
(λ hᴰ' p goal hᴰ' p ∙ ϕ[π₁x]∧ψ[π₂x].η hᴰ')
where
Expand All @@ -253,38 +252,38 @@ module _ {C : Category ℓC ℓC'}{c c' : C .ob}
goal hᴰ' p = cong₂ ϕ[π₁x]∧ψ[π₂x].⟨_,_⟩ q₁ q₂
where
q₁'''' : (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) Cᴰ.⋆ᴰ B*.π₁* Cᴰ.≡[ _ ] fᴰ
q₁'''' = ≡out (≡in (Cᴰ.⋆Assocᴰ _ _ _)
R.⟨ refl ⟩⋆⟨ reind-filler _ _ ⟩ ∙
≡in (congP (λ _ fst) p))
q₁'''' = R.≡out (R.⋆Assoc _ _ _ ∙
R.⟨ refl ⟩⋆⟨ R.reind-filler _ _ ⟩ ∙
R.≡in (congP (λ _ fst) p))
q₁''' :
reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) Cᴰ.⋆ᴰ B*.π₁* ≡ fᴰ
q₁''' = rectify (≡out (R.⟨ sym (reind-filler _ _) ⟩⋆⟨ refl ⟩ ∙
≡in q₁''''))
R.reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) Cᴰ.⋆ᴰ B*.π₁* ≡ fᴰ
q₁''' = R.rectify (R.≡out (R.⟨ sym (R.reind-filler _ _) ⟩⋆⟨ refl ⟩ ∙
R.≡in q₁''''))
q₁'' : fᴰ* .fst ≡
(reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) , q₁''')
(R.reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) , q₁''')
q₁'' = fᴰ* .snd
(reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) , q₁''')
(R.reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) , q₁''')
q₁' : fᴰ* .fst .fst Cᴰ.≡[ _ ] hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁
q₁' = ≡out (≡in (congP (λ _ fst) q₁'') ∙ sym (reind-filler _ _))
q₁' = R.≡out (R.≡in (congP (λ _ fst) q₁'') ∙ sym (R.reind-filler _ _))
q₁ : fᴰ* .fst .fst Cᴰ.⋆ᴰ Cᴰ.idᴰ ≡ hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁
q₁ = rectify (≡out (≡in (Cᴰ.⋆IdRᴰ _) ∙ ≡in q₁'))
q₁ = R.rectify (R.≡out (R.⋆IdR _R.≡in q₁'))

q₂'''' : (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) Cᴰ.⋆ᴰ B*.π₂* Cᴰ.≡[ _ ] gᴰ
q₂'''' = ≡out (≡in (Cᴰ.⋆Assocᴰ _ _ _)
R.⟨ refl ⟩⋆⟨ reind-filler _ _ ⟩ ∙
≡in (congP (λ _ snd) p))
q₂'''' = R.≡out (R.⋆Assoc _ _ _ ∙
R.⟨ refl ⟩⋆⟨ R.reind-filler _ _ ⟩ ∙
R.≡in (congP (λ _ snd) p))
q₂''' :
reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) Cᴰ.⋆ᴰ B*.π₂* ≡ gᴰ
q₂''' = rectify (≡out (R.⟨ sym (reind-filler _ _) ⟩⋆⟨ refl ⟩ ∙
≡in q₂''''))
R.reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) Cᴰ.⋆ᴰ B*.π₂* ≡ gᴰ
q₂''' = R.rectify (R.≡out (R.⟨ sym (R.reind-filler _ _) ⟩⋆⟨ refl ⟩ ∙
R.≡in q₂''''))
q₂'' : gᴰ* .fst ≡
(reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) , q₂''')
(R.reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) , q₂''')
q₂'' = gᴰ* .snd
(reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) , q₂''')
(R.reind (C .⋆IdR h) (hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂) , q₂''')
q₂' : gᴰ* .fst .fst Cᴰ.≡[ _ ] hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂
q₂' = ≡out (≡in (congP (λ _ fst) q₂'') ∙ sym (reind-filler _ _))
q₂' = R.≡out (R.≡in (congP (λ _ fst) q₂'') ∙ sym (R.reind-filler _ _))
q₂ : gᴰ* .fst .fst Cᴰ.⋆ᴰ Cᴰ.idᴰ ≡ hᴰ' Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂
q₂ = rectify (≡out (≡in (Cᴰ.⋆IdRᴰ _) ∙ ≡in q₂'))
q₂ = R.rectify (R.≡out (R.⋆IdR _R.≡in q₂'))

β :
(hᴰ Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁ , hᴰ Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₂)
Expand All @@ -293,10 +292,10 @@ module _ {C : Category ℓC ℓC'}{c c' : C .ob}
β = ϕ[π₁x]∧ψ[π₂x].β' (fᴰ* .fst .fst) (gᴰ* .fst .fst)

aaa₁ : hᴰ Cᴰ.⋆ᴰ π₁ᴰ Cᴰ.≡[ _ ] hᴰ Cᴰ.⋆ᴰ π₁⋆π₁*
aaa₁ = ≡out (R.⟨ refl ⟩⋆⟨ sym (reind-filler _ _) ⟩)
aaa₁ = R.≡out (R.⟨ refl ⟩⋆⟨ sym (R.reind-filler _ _) ⟩)

aaa₂ : hᴰ Cᴰ.⋆ᴰ π₂ᴰ Cᴰ.≡[ _ ] hᴰ Cᴰ.⋆ᴰ π₂⋆π₂*
aaa₂ = ≡out (R.⟨ refl ⟩⋆⟨ sym (reind-filler _ _) ⟩)
aaa₂ = R.≡out (R.⟨ refl ⟩⋆⟨ sym (R.reind-filler _ _) ⟩)

bbb₁ : (hᴰ Cᴰ.⋆ᴰ ϕ[π₁x]∧ψ[π₂x].π₁) Cᴰ.⋆ᴰ B*.π₁* ≡
(fᴰ* .fst .fst Cᴰ.⋆ᴰ Cᴰ.idᴰ) Cᴰ.⋆ᴰ B*.π₁*
Expand Down

0 comments on commit 2141871

Please sign in to comment.