Skip to content

Commit

Permalink
misc order
Browse files Browse the repository at this point in the history
  • Loading branch information
mazsa committed Jul 20, 2024
1 parent 5a78c5e commit 3acb85c
Showing 1 changed file with 229 additions and 24 deletions.
253 changes: 229 additions & 24 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -550629,6 +550629,11 @@ A collection of theorems for commuting equalities (or
( wceq sseq bicomd ) CDGABABCDEFHI $.
$}

$( (Contributed by Peter Mazsa, 18-Jul-2024.) $)
2eq0or $p |- ( ( A = (/) \/ B = (/) ) -> ( A i^i B ) = (/) ) $=
( c0 wceq cin ineq1 0in syl6eq ineq2 in0 jaoi ) ACDZABEZCDBCDZLMC
BECACBFBGHNMACECBCAIAJHK $.

$( Two ways of expressing the restriction of an intersection. (Contributed
by Peter Mazsa, 5-Jun-2021.) $)
inres2 $p |- ( ( R |` A ) i^i S ) = ( ( R i^i S ) |` A ) $=
Expand Down Expand Up @@ -550905,6 +550910,21 @@ A collection of theorems for commuting equalities (or
ZDLUGUEJZDLUDUFUBUKULDUJULEACUHAJUIUEUGUHABMNOPEDUCBRDUESTUA $.
$}

${
$d A x $.
$( (Contributed by Peter Mazsa, 18-Jul-2024.) $)
eq02 $p |- ( A = (/) <-> ( A. x e. A ph /\ -. E. x e. A ph ) ) $=
( c0 wne wn wral wrex wi wceq r19.2zb notbii nne pm4.61 3bitr3i
wa ) CDEZFABCGZABCHZIZFCDJRSFPQTABCKLCDMRSNO $.
$}

${
$d A x $.
$( (Contributed by Peter Mazsa, 18-Jul-2024.) $)
eq02im $p |- ( A = (/) -> -. E. x e. A ph ) $=
( c0 wceq wral wrex wn eq02 simprbi ) CDEABCFABCGHABCIJ $.
$}

$( Negated elementhood of ordered pair. (Contributed by Peter Mazsa,
14-Jan-2019.) $)
opelvvdif $p |- ( ( A e. V /\ B e. W ) ->
Expand Down Expand Up @@ -551100,6 +551120,50 @@ A collection of theorems for commuting equalities (or
$.
$}

${
$d A x y $.
$( (Contributed by Peter Mazsa, 16-Jul-2024.) $)
reldm2 $p |- ( Rel A -> dom A = { y | E. x e. A y = ( 1st ` x ) } ) $=
( wrel c1st cfv wceq wrex cdm wcel releldm2 rexbii syl6bb abbi2dv
cv eqcom ) CDZBOZAOEFZGZACHZBCIZQRUBJSRGZACHUAACRKUCTACSRPLMN $.
$}

${
$d A x $. $d B x $.
$( (Contributed by Peter Mazsa, 16-Jul-2024.) $)
op2ndeq $p |- ( A e. ( V X. W ) ->
( ( 2nd ` A ) = B <-> E. x A = <. x , B >. ) ) $=
( cxp wcel cvv c2nd cfv wceq cv cop wex wb xpss sseli wa c1st syl
eqid eqopi mpanr1 fvex opeq1 eqeq2d spcev ex simpr syl6bi exlimdv
eqop impbid ) BDEFZGBHHFZGZBIJCKZBALZCMZKZANZOUNUOBDEPQUPUQVAUPUQ
VAUPUQRBBSJZCMZKZVAUPVBVBKUQVDVBUABVBCHHUBUCUTVDAVBBSUDURVBKUSVCB
URVBCUEUFUGTUHUPUTUQAUPUTVBURKZUQRUQBURCHHULVEUQUIUJUKUMT $.
$}

${
$d A x y $. $d B x y $.
$( (Contributed by Peter Mazsa, 16-Jul-2024.) $)
relelrn2 $p |- ( Rel A ->
( B e. ran A <-> E. x e. A ( 2nd ` x ) = B ) ) $=
( vy wrel crn wcel cv c2nd cfv wceq wrex cvv elex anim2i fvex wex
wa id wb syl6eqelr rexlimivw cop elrn2g adantl cxp wi df-rel ssel
wss sylbi imp op2ndeq rexbidva adantr rexcom4 risset exbii bitr4i
syl syl6bb bitr4d pm5.21nd ) BEZCBFZGZAHZIJZCKZABLZVDCMGZRZVFVKVD
CVENOVJVKVDVIVKABVICVHMVISVGIPUAUBOVLVFDHCUCZBGZDQZVJVKVFVOTVDDCB
MUDUEVLVJVGVMKZDQZABLZVOVDVJVRTVKVDVIVQABVDVGBGZRVGMMUFZGZVIVQTVD
VSWAVDBVTUJVSWAUGBUHBVTVGUIUKULDVGCMMUMUTUNUOVRVPABLZDQVOVPADBUPV
NWBDAVMBUQURUSVAVBVC $.
$}

${
$d A x y $.
$( (Contributed by Peter Mazsa, 16-Jul-2024.) $)
relrn2 $p |- ( Rel A -> ran A = { y | E. x e. A y = ( 2nd ` x ) } ) $=
( wrel c2nd cfv wceq wrex crn wcel relelrn2 eqcom rexbii syl6bb
cv abbi2dv ) CDZBOZAOEFZGZACHZBCIZQRUBJSRGZACHUAACRKUCTACSRLMNP
$.
$}

${
eceq1i.1 $e |- A = B $.
$( Equality theorem for ` C ` -coset of ` A ` and ` C ` -coset of ` B ` ,
Expand Down Expand Up @@ -552201,6 +552265,15 @@ relation with an intersection with the same Cartesian product (see also
HZBHZCIQPCIJBKAKCLABCMN $.
$}

${
$d R x y $.
$( (Contributed by Peter Mazsa, 15-Jul-2024.) $)
relcnveq5 $p |- ( Rel R ->
( A. x A. y ( x R y -> y R x ) <-> A. x A. y ( x R y <-> y R x ) ) ) $=
( cv wbr wi wal ccnv wss wrel wb cnvsym relcnveq4 syl5bbr ) ADZBD
ZCEZPOCEZFBGAGCHCICJQRKBGAGABCLABCMN $.
$}

${
$d A u v $. $d R u v $.
$( Simplification of a special quotient set. (Contributed by Peter Mazsa,
Expand Down Expand Up @@ -552655,15 +552728,22 @@ relation with an intersection with the same Cartesian product (see also
DEABCQT $.
$}

$( Implication of two reflexive relations (when T = _I ). (Contributed by
Peter Mazsa, 7-May-2024.) $)
$( (Contributed by Peter Mazsa, 7-May-2024.) $)
asymcnvepres $p |- A. x A. y ( x ( `' _E |` A ) y ->
-. y ( `' _E |` A ) x ) $=
( cv cep ccnv cres wbr wn wi wa wb cvv brcnvepres elnotel intnand
wcel el2v adantl sylnibr sylbi gen2 ) ADZBDZEFCGZHZUDUCUEHZIZJABU
FUCCQZUDUCQZKZUHUFUKLABCUCUDMMNRUKUDCQZUCUDQZKZUGUJUNIUIUJUMULUDU
COPSUGUNLBACUDUCMMNRTUAUB $.

$( (Contributed by Peter Mazsa, 14-Jul-2024.) $)
asymALTcnvepres $p |-
A. x e. B A. y e. C ( x ( `' _E |` A ) y -> -. y ( `' _E |` A ) x ) $=
( cv cep ccnv cres wbr wn wi wa wb cvv brcnvepres elnotel intnand
wcel el2v adantl sylnibr sylbi rgen2w ) AFZBFZGHCIZJZUFUEUGJZKZLA
BDEUHUECSZUFUESZMZUJUHUMNABCUEUFOOPTUMUFCSZUEUFSZMZUIULUPKUKULUOU
NUFUEQRUAUIUPNBACUFUEOOPTUBUCUD $.

$( Implication of two reflexive relations (when T = _I ). (Contributed by
Peter Mazsa, 7-May-2024.) $)
indmrnin $p |- ( ( ( T i^i ( dom R X. ran R ) ) C_ R /\
Expand Down Expand Up @@ -554957,6 +555037,60 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these
) BEGBCAHZIJGFKZBCLZFRMADGABCLZFRBCENTUAFADSABCOPQ $.
$}

${
$d A y $. $d R y $. $d V y $.
$( (Contributed by Peter Mazsa, 17-Jul-2024.) $)
rnressn $p |- ( ( A e. V \/ Rel R ) ->
ran ( R |` { A } ) = { y | A R y } ) $=
( wcel csn cres crn cv wbr cab wceq wrel wb cvv elrnressn abbi2dv
elvd cima df-ima relimasn syl5eqr jaoi ) BDEZCBFZGHZBAIZCJZAKZLCM
ZUDUHAUFUDUGUFEUHNABUGCDOPRQUJUFCUESUICUETABCUAUBUC $.
$}

${
$d A x y $. $d R x y $.
$( (Contributed by NM, 8-May-2005.) (Revised by Peter Mazsa,
17-Jul-2024.) $)
imasn $p |- ( ( A e. V \/ Rel R ) -> ( R " { A } ) = { y | A R y } ) $=
( vx wcel csn cima cv wbr cab wceq wrel elex wrex dfima2 breq1 wn
cvv c0 rexsng abbidv syl5eq syl wa snprc imaeq2 sylbi ima0 syl6eq
adantl wex brrelex1 stoic1a nexdv abn0 necon1bbii sylib eqtr4d ex
pm2.61d2 jaoi ) BDFZCBGZHZBAIZCJZAKZLZCMZVCBSFZVIBDNVKVEEIZVFCJZE
VDOZAKVHEACVDPVKVNVGAVMVGEBSVLBVFCQUAUBUCZUDVJVKVIVJVKRZVIVJVPUEZ
VETVHVPVETLVJVPVECTHZTVPVDTLVEVRLBUFVDTCUGUHCUIUJUKVQVGAULZRVHTLV
QVGAVJVGVKBVFCUMUNUOVSVHTVGAUPUQURUSUTVOVAVB $.
$}

${
$d A y $. $d R y $. $d V y $.
$( (Contributed by Peter Mazsa, 17-Jul-2024.) $)
imasn2 $p |- ( ( A e. V \/ Rel R ) ->
( R " { A } ) = ran ( R |` { A } ) ) $=
( vy wcel wrel wo csn cima wbr cab cres crn imasn rnressn eqtr4d
cv ) ACEBFGBAHZIADQBJDKBRLMDABCNDABCOP $.
$}

${
$d A y $. $d R y $.
$( Alternate definition of ` R ` -coset of ` A ` . Definition 34 of
[Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by
Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 5-Sep-2023.) $)
dfec2ALTV $p |- ( ( A e. V \/ Rel R ) -> [ A ] R = { y | A R y } ) $=
( wcel wrel wo cec csn cima cv wbr cab df-ec imasn syl5eq ) BDECF
GBCHCBIJBAKCLAMBCNABCDOP $.
$}

${
$d A x $. $d B x $. $d R x $.
$( (Contributed by Peter Mazsa, 11-Apr-2019.) (Revised by Peter Mazsa,
17-Jul-2024.) $)
eqec $p |- ( ( B e. V \/ Rel R ) ->
( A = [ B ] R <-> A. x ( x e. A <-> B R x ) ) ) $=
( wcel wrel wo cec wceq cv wbr wb dfec2ALTV eqeq2d abeq2 syl6bb
cab wal ) CEFDGHZBCDIZJBCAKZDLZARZJUBBFUCMASTUAUDBACDENOUCABPQ
$.
$}

$( (Contributed by Peter Mazsa, 12-Jun-2024.) $)
elrnressn2 $p |- ( ( A e. V /\ B e. W ) ->
( B e. ran ( R |` { A } ) <-> B e. [ A ] R ) ) $=
Expand All @@ -554965,10 +555099,10 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these

${
$d A x $. $d R x $. $d V x $.
$( (Contributed by Peter Mazsa, 12-Jun-2024.) $)
dfec3 $p |- ( A e. V -> [ A ] R = ran ( R |` { A } ) ) $=
( vx wcel csn cres crn cec cv wb cvv elrnressn2 elvd eqrdv eqcomd
) ACEZBAFGHZABIZQDRSQDJZRETSEKDATBCLMNOP $.
$( (Contributed by Peter Mazsa, 17-Jul-2024.) $)
dfec3 $p |- ( ( A e. V \/ Rel R ) -> [ A ] R = ran ( R |` { A } ) ) $=
( wcel wrel wo cec csn cima cres crn df-ec imasn2 syl5eq ) ACDB
EFABGBAHZIBOJKABLABCMN $.
$}

${
Expand Down Expand Up @@ -555023,6 +555157,17 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these
JZDAKDAUCCMUHUJDAUHUIUGJUJUEUIUGUEUINDUDBROSPUDBUFCQTUAUB $.
$}

${
$d A x y $. $d B x y $. $d R x y $.
$( (Contributed by Peter Mazsa, 17-Jul-2024.) $)
elressn $p |- ( A e. V ->
( B e. ( R |` { A } ) <-> E. y ( B = <. A , y >. /\ A R y ) ) ) $=
( vx csn cres wcel cv cop wceq wa wex wrex wbr elres opeq1 eqeq2d
eleq1d df-br syl6bbr anbi12d exbidv rexsng syl5bb ) CDBGZHICFJZAJ
ZKZLZUJDIZMZANZFUGOBEICBUIKZLZBUIDPZMZANZFACDUGQUNUSFBEUHBLZUMURA
UTUKUPULUQUTUJUOCUHBUIRZSUTULUODIUQUTUJUODVATBUIDUAUBUCUDUEUF $.
$}

${
$d A x $. $d V x $.
$( Any class ' R ' restricted to the singleton of the set ' A ' (see
Expand Down Expand Up @@ -555130,19 +555275,20 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these

${
$d A y $. $d B y $. $d R y $. $d W y $.
$( (Contributed by Peter Mazsa, 14-Jun-2024.) $)
ecressn $p |- ( ( A e. V /\ B e. W ) ->
$( cf dmressnqs (Contributed by Peter Mazsa, 14-Jun-2024.) $)
ecressn $p |- ( ( ( A e. V \/ Rel R ) /\ B e. W ) ->
( [ B ] ( R |` { A } ) = [ A ] R \/
[ B ] ( R |` { A } ) = (/) ) ) $=
( vy wcel wa wceq cv wbr csn cres cec nfvd cab wb cvv elecressn
elvd eqbrb syl6bb abbi2dv adantl dfec2 adantr a0orb ) ADGZBEGZH
ZBAIZAFJZCKZFBCALMNZACNZUJUKFOUIUNUKUMHZFPIUHUIUPFUNUIULUNGZUKB
ULCKHZUPUIUQURQFABULCERSTBAULCUAUBUCUDUHUOUMFPIUIFACDUEUFUG $.
( vy wcel wrel wo wa wceq cv wbr csn cres cec nfvd cab wb cvv
elecressn elvd eqbrb syl6bb abbi2dv adantl dfec2ALTV adantr a0orb
) ADGCHIZBEGZJZBAKZAFLZCMZFBCANOPZACPZULUMFQUKUPUMUOJZFRKUJUKURFU
PUKUNUPGZUMBUNCMJZURUKUSUTSFABUNCETUAUBBAUNCUCUDUEUFUJUQUOFRKUKFA
CDUGUHUI $.
$}

${
$d A x y $. $d B x y $. $d R x y $. $d V y $. $d W x y $.
$( (Contributed by Peter Mazsa, 1-Jun-2024.) $)
$( cf dmressnqs (Contributed by Peter Mazsa, 1-Jun-2024.) $)
ec1cossressn $p |- ( ( A e. V /\ B e. W ) ->
( [ B ] ,~ ( R |` { A } ) = [ A ] R \/
[ B ] ,~ ( R |` { A } ) = (/) ) ) $=
Expand All @@ -555153,22 +555299,55 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these
CSURAUMCSUBUCUDUEUIUQUNFQRUJFACDUFUGUH $.
$}

$( (Contributed by Peter Mazsa, 14-Jun-2024.) $)
ecressn2 $p |- ( A e. V ->
$( cf dmressnqs (Contributed by Peter Mazsa, 14-Jun-2024.) $)
ecressn2 $p |- ( ( A e. V \/ Rel R ) ->
( B e. dom ( R |` { A } ) -> [ B ] ( R |` { A } ) = [ A ] R ) ) $=
( wcel csn cres cdm cec wceq wa c0 wo ecressn wn wi ecdmn0 biimpi
wne adantl df-ne sylib orel2 syl mpd ex ) ADEZBCAFGZHZEZBUHIZACIJ
ZUGUJKZULUKLJZMZULABCDUINUMUNOZUOULPUMUKLSZUPUJUQUGUJUQBUHQRTUKLU
AUBUNULUCUDUEUF $.
( wcel wrel wo csn cres cdm cec wa c0 ecressn wn wi ecdmn0 biimpi
wceq wne adantl df-ne sylib orel2 syl mpd ex ) ADECFGZBCAHIZJZEZB
UIKZACKSZUHUKLZUMULMSZGZUMABCDUJNUNUOOZUPUMPUNULMTZUQUKURUHUKURBU
IQRUAULMUBUCUOUMUDUEUFUG $.

$( (Contributed by Peter Mazsa, 9-Jun-2024.) $)
$( cf dmressnqs (Contributed by Peter Mazsa, 9-Jun-2024.) $)
ec1cossressn2 $p |- ( A e. V ->
( B e. dom ,~ ( R |` { A } ) -> [ B ] ,~ ( R |` { A } ) = [ A ] R ) ) $=
( wcel csn cres ccoss cdm wceq wa c0 wo ec1cossressn wn wi ecdmn0
cec wne biimpi adantl df-ne sylib orel2 syl mpd ex ) ADEZBCAFGHZI
ZEZBUIRZACRJZUHUKKZUMULLJZMZUMABCDUJNUNUOOZUPUMPUNULLSZUQUKURUHUK
URBUIQTUAULLUBUCUOUMUDUEUFUG $.

${
$d A x y $. $d B x y $. $d R x y $. $d V y $.
$( (Contributed by Peter Mazsa, 18-Jul-2024.) $)
dmressnqs $p |- ( dom ( R |` { A } ) /. ( R |` { A } ) ) =
if ( A e. dom R , { [ A ] R } , (/) ) $=
( vy vx csn cdm wcel cec c0 wceq wi wn cab cin cv wa wrex wb wo
cvv cres cqs cif df-qs wrel ecressn2 imp eqeq2d rexbidva df-rex
orcs wex eldmressnALTV anbi1i anass bitri exbii bitr2i ceqsexgv
elv biidd syl5bbr bitrd abbidv syl5eq ineq2i inab eqtr2i syl6eq
df-sn wal ax-5 bj-abv ineq1 incom inv1 eqtri 3syl eqtrd biimpri
ianor olcs sylnibr eq0rdv eq02im syl bj-ab0 eqeq1i sylibr ifval
alrimiv mpbir2an ) BAEUAZFZWMUBZABFZGZABHZEZIUCJWQWOWSJKWQLZWOI
JZKWQWOWQCMZWSNZWSWQWOWQCOZWRJZPZCMZXCWQWOXDDOZWMHZJZDWNQZCMZXG
DCWNWMUDZWQXKXFCWQXKXEDWNQZXFWQBUEZXKXNRWQXOSZXJXEDWNXPXHWNGZPX
IWRXDXPXQXIWRJAXHBWPUFUGUHUIUKXNXHAJZXFPZDULZWQXFXNXQXEPZDULXTX
EDWNUJYAXSDYAXRWQPZXEPXSXQYBXEXQYBRDAXHBTUMUTZUNXRWQXEUOUPUQURX
FXFDAWPXRXFVAUSVBVCVDVEXCXBXECMZNXGWSYDXBCWRVJVFWQXECVGVHVIWQWQ
CVKXBTJZXCWSJWQCVLWQCVMYEXCTWSNZWSXBTWSVNYFWSTNWSTWSVOWSVPVQVIV
RVSWTXLIJZXAWTXKLZCVKYGWTYHCWTWNIJYHWTDWNWTYBXQXRLZWTYBLZYJYIWT
SXRWQWAVTWBYCWCWDXJDWNWEWFWKXKCWGWFWOXLIXMWHWIWQWOWSIWJWL $.
$}

$( (Contributed by Peter Mazsa, 19-Jul-2024.) $)
dmressnqseq $p |- if- ( A e. dom R ,
( ( dom ( R |` { A } ) /. ( R |` { A } ) ) = { A } <-> [ A ] R = A ) ,
( ( dom ( R |` { A } ) /. ( R |` { A } ) ) = { A } <-> -. A e. _V ) ) $=
( cdm wcel csn cres cqs wceq cec wb cvv wn wi wa c0 syl5eq eqeq1d
wif cif eqcom dmressnqs iftrue sneqbg 3bitr3g bitrd iffalse snprc
bitri syl6bbr pm3.2i dfifp2 mpbir ) ABCZDZBAEZFZCUPGZUOHZABIZAHZJ
ZURAKDLZJZRUNVAMZUNLZVCMZNVDVFUNURUSEZUOHZUTUNUQVGUOUNUQUNVGOSZVG
ABUAZUNVGOUBPQUNUOVGHAUSHVHUTAUSUMUCUOVGTAUSTUDUEVEUROUOHZVBVEUQO
UOVEUQVIOVJUNVGOUFPQVBUOOHVKAUGUOOTUHUIUJUNVAVCUKUL $.

${
$d A u x $.
$( erimsn cf. ~ 0nep0 . (Contributed by Peter Mazsa, 15-Jun-2024.) $)
Expand Down Expand Up @@ -555336,10 +555515,11 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these

$( The domain of cosets of a restriction to a singleton is the ` R ` -coset
of the element of the singleton. (Contributed by Peter Mazsa,
13-Jun-2024.) $)
dm1cossressn $p |- ( A e. V -> dom ,~ ( R |` { A } ) = [ A ] R ) $=
( wcel cec csn cres crn ccoss cdm dfec3 dmcoss2 syl6reqr ) ACDABE
BAFGZHNIJABCKNLM $.
17-Jul-2024.) $)
dm1cossressn $p |- ( ( A e. V \/ Rel R ) ->
dom ,~ ( R |` { A } ) = [ A ] R ) $=
( wcel wrel wo cec csn cres crn ccoss cdm dfec3 dmcoss2 syl6reqr
) ACDBEFABGBAHIZJPKLABCMPNO $.

$( The domain of cosets of the restricted converse epsilon relation is the
union of the restriction. (Contributed by Peter Mazsa, 18-May-2019.)
Expand Down Expand Up @@ -556070,6 +556250,14 @@ definitions of epsilon relation ( ~ df-eprel ) and identity relation
( cincomparelALTto cdm cdif dfincomparelALTto dmrnxpdifincnvdif
crn cxp ccnv cin cun eqtri ) ABACZAGZHADZOIJMNJZPHAAIKDAEAFL $.

$( (Contributed by Peter Mazsa, 20-Jul-2024.) $)
incompareltovvdif $p |- ( Rel R ->
InCompaRelTo ( ( _V X. _V ) \ R ) = ( R i^i `' R ) ) $=
( wrel cvv cxp cdif cincomparelto ccnv cin dfincomparelto relddif
wceq cnvxpdif difeq2i eqtri relcnv ax-mp a1i ineq12d syl5eq ) ABZ
CCDZAEZFUAUBEZUCGZHAAGZHUBITUCAUDUEAJUDUEKTUDUAUAUEEZEZUEUDUAUBGZ
EUGCCUBLUHUFUACCALMNUEBUGUEKAOUEJPNQRS $.

$( (Contributed by Peter Mazsa, 13-Jul-2024.) $)
incomparelALTtovvdif $p |- ( R e. V -> ( Rel R ->
InCompaRelALTTo ( ( _V X. _V ) \ R ) = ( R i^i `' R ) ) ) $=
Expand Down Expand Up @@ -557536,6 +557724,23 @@ class of symmetric relations as well (like the elements of the class of
( cep ccnv cres cin wasymrel c0 wceq wrel asymincnvepres relinres
dfasymrel4 mpbir2an ) BCDZAEFZGPPDFHIPJABKABOLPMN $.

$( (Contributed by Peter Mazsa, 20-Jul-2024.) $)
incompareltovvdifcnvepres $p |-
InCompaRelTo ( ( _V X. _V ) \ ( `' _E |` A ) ) = (/) $=
( cvv cxp cep ccnv cres cdif cincomparelto c0 cin asymrelcnvepres
wceq wasymrel wrel relres dfasymrel4 mpbi incompareltovvdif ax-mp
mpbiran2 eqeq1i mpbir ) BBCDEZAFZGHZILUDUDEJZILZUDMZUGAKUHUGUDNZU
CAOZUDPTQUEUFIUIUEUFLUJUDRSUAUB $.

$( (Contributed by Peter Mazsa, 20-Jul-2024.) $)
incomparelALTtovvdifcnvepres $p |- ( A e. V ->
InCompaRelALTTo ( ( _V X. _V ) \ ( `' _E |` A ) ) = (/) ) $=
( wcel cvv cxp cep ccnv cres cdif cincomparelALTto cin cnvepresex
c0 wceq wrel relres incomparelALTtovvdif mpi syl wasymrel syl6eq
asymrelcnvepres dfasymrel4 mpbiran2 mpbi ) ABCZDDEFGZAHZIJZUHUHGK
ZMUFUHDCZUIUJNZABLUKUHOZULUGAPZUHDQRSUHTZUJMNZAUBUOUPUMUNUHUCUDUE
UA $.

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Strict completeness (converse asymmetry)
Expand Down

0 comments on commit 3acb85c

Please sign in to comment.