Skip to content

Commit

Permalink
dfantisymrel4, antisymrelressn
Browse files Browse the repository at this point in the history
  • Loading branch information
mazsa committed Jan 3, 2025
1 parent b888ff2 commit 4a97e01
Showing 1 changed file with 138 additions and 0 deletions.
138 changes: 138 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -450831,6 +450831,9 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the
htmldef "ElDisj" as ' ElDisj ';
althtmldef "ElDisj" as ' ElDisj ';
latexdef "ElDisj" as "\mathrm{ElDisj}";
htmldef "AntisymRel" as ' AntisymRel ';
althtmldef "AntisymRel" as ' AntisymRel ';
latexdef "AntisymRel" as "\mathrm{AntisymRel}";
/* End of Peter Mazsa's mathbox */

/* Mathbox of Rodolfo Medina */
Expand Down Expand Up @@ -580791,6 +580794,8 @@ A collection of theorems for commuting equalities (or
relation $)
$c ElDisj $. $( Disjoint elementhood predicate $)

$c AntisymRel $. $( Antisymmetric relation predicate $)

$( Extend the definition of a class to include the range Cartesian product
class. $)
cxrn $a class ( A |X. B ) $.
Expand Down Expand Up @@ -580919,6 +580924,10 @@ A collection of theorems for commuting equalities (or
elements of ` A ` are disjoint.) $)
weldisj $a wff ElDisj A $.

$( Extend the definition of a wff to include the antisymmetry relation
predicate. (Read: ` R ` is an antisymmetric relation.) $)
wantisymrel $a wff AntisymRel R $.


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Expand Down Expand Up @@ -581024,6 +581033,15 @@ A collection of theorems for commuting equalities (or
( wa anbi1i bitri ) ABCGDCGEBDCFHI $.
$}

${
bianim.1 $e |- ( ph <-> ( ps /\ ch ) ) $.
bianim.2 $e |- ( ch -> ( ps <-> th ) ) $.
$( Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa,
31-Jul-2023.) $)
bianim $p |- ( ph <-> ( th /\ ch ) ) $=
( wa pm5.32ri bitri ) ABCGDCGECBDFHI $.
$}

$( Substitution of equal classes in binary relation. (Contributed by Peter
Mazsa, 14-Jun-2024.) $)
eqbrtr $p |- ( ( A = B /\ B R C ) -> A R C ) $=
Expand Down Expand Up @@ -581082,6 +581100,16 @@ A collection of theorems for commuting equalities (or
( cv wcel wi cin wa elin imbi1i impexp bitri ralbii2 ) ABEZDFZAGZBCDHZCORFZ
AGOCFZPIZAGTQGSUAAOCDJKTPALMN $.

${
$d A y $. $d x y $.
$( Double restricted universal quantification, special case. (Contributed
by Peter Mazsa, 17-Jun-2020.) $)
r2alan $p |- ( A. x A. y ( ( ( x e. A /\ y e. B ) /\ ph ) -> ps ) <->
A. x e. A A. y e. B ( ph -> ps ) ) $=
( cv wcel wa wi wal wral impexp 2albii r2al bitr4i ) CGEHDGFHIZAIBJZDKCKQ
ABJZJZDKCKSDFLCELRTCDQABMNSCDEFOP $.
$}

${
3ralbii.1 $e |- ( ph <-> ps ) $.
$( Inference adding three restricted universal quantifiers to both sides of
Expand Down Expand Up @@ -582045,6 +582073,33 @@ relation with an intersection with the same Cartesian product (see also
( ccnv crn cres cdm df-rn reseq2i wrel wceq relcnv dfrel5 mpbi eqtri ) ABZA
CZDNNEZDZNOPNAFGNHQNIAJNKLM $.

$( Subset of restriction, special case. (Contributed by Peter Mazsa,
10-Apr-2023.) $)
relssinxpdmrn $p |- ( Rel R ->
( R C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) $=
( wrel wss cdm crn cxp wa cin relssdmrn biantrud ssin bitr2di ) ACZABDZOAAE
AFGZDZHABPIDNQOAJKABPLM $.

$( Two ways to say that a relation is a subclass. (Contributed by Peter
Mazsa, 11-Apr-2023.) $)
cnvref4 $p |- ( Rel R ->
( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) <->
R C_ S ) ) $=
( wrel cdm crn cxp cin wceq dfrel6 biimpi dmeqd rneqd xpeq12d ineq2d sseq2d
wss wb relxp relin2 relssinxpdmrn mp2b sseq1d bitrid bitr3d ) ACZAADZAEZFZG
ZBUIDZUIEZFZGZPZUIBUHGZPABPZUEUMUOUIUEULUHBUEUJUFUKUGUEUIAUEUIAHAIJZKUEUIAU
QLMNOUNUIBPZUEUPUHCUICUNURQUFUGRAUHSUIBTUAUEUIABUQUBUCUD $.

${
$d R x y $.
$( Two ways to say that a relation is a subclass of the identity relation.
(Contributed by Peter Mazsa, 26-Jun-2019.) $)
cnvref5 $p |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) $=
( wrel cid wss cv wbr wi wal ssrel3 wb cvv ideqg elv imbi2i 2albii bitrdi
wceq ) CDCEFAGZBGZCHZTUAEHZIZBJAJUBTUASZIZBJAJABCEKUDUFABUCUEUBUCUELBTUAM
NOPQR $.
$}

${
$d A x $. $d B x $. $d R x $. $d V x $. $d W x $.
$( Two ways of saying that the coset of ` A ` and the coset of ` B ` have
Expand Down Expand Up @@ -582262,6 +582317,12 @@ relation with an intersection with the same Cartesian product (see also
ZBJDCBDAKPBOCLMN $.
$}

$( Intersection with a converse, binary relation. (Contributed by Peter
Mazsa, 24-Mar-2024.) $)
brcnvin $p |- ( ( A e. V /\ B e. W ) ->
( A ( R i^i `' S ) B <-> ( A R B /\ B S A ) ) ) $=
( ccnv cin wbr wa wcel brin brcnvg anbi2d bitrid ) ABCDGZHIABCIZABPIZJAEKBF
KJZQBADIZJABCPLSRTQABEFDMNO $.

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Expand Down Expand Up @@ -582989,6 +583050,15 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these
ABUSUSCRRUNUOUPUQ $.
$}

$( Every class ' R ' restricted to the singleton of the class ' A ' (see
~ ressn2 ) is antisymmetric. (Contributed by Peter Mazsa,
11-Jun-2024.) $)
antisymressn $p |-
A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) $=
( cv csn cres wbr wa wceq wi wb cvv brressn el2v simplbi eqtr3 syl2an gen2
) AEZBEZDCFGZHZUATUBHZITUAJZKABUCTCJZUACJZUEUDUCUFTUADHZUCUFUHILABCTUADMMNO
PUDUGUATDHZUDUGUIILBACUATDMMNOPTUACQRS $.

$( Any class ' R ' restricted to the singleton of the class ' A ' (see
~ ressn2 ) is transitive, see also ~ trrelressn . (Contributed by Peter
Mazsa, 16-Jun-2024.) $)
Expand Down Expand Up @@ -583954,6 +584024,22 @@ and disjoints ( ~ df-disjs , ~ df-disjALTV ).
FLCQUEUGUFABUBUCCSTUA $.
$}

$( Alternate definition of the converse reflexive relation predicate.
(Contributed by Peter Mazsa, 25-May-2024.) $)
dfcnvrefrel4 $p |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) $=
( wcnvrefrel cdm crn cxp cin cid wss wrel df-cnvrefrel cnvref4 bianim ) ABA
ACADEZFGMFHAIAGHAJAGKL $.

${
$d R x y $.
$( Alternate definition of the converse reflexive relation predicate.
(Contributed by Peter Mazsa, 25-May-2024.) $)
dfcnvrefrel5 $p |- ( CnvRefRel R <->
( A. x A. y ( x R y -> x = y ) /\ Rel R ) ) $=
( wcnvrefrel cid wss wrel cv wbr wceq wi wal dfcnvrefrel4 cnvref5 bianim
) CDCEFCGAHZBHZCIPQJKBLALCMABCNO $.
$}

${
$d R r $.
$( Element of the class of converse reflexive relations. (Contributed by
Expand Down Expand Up @@ -586089,6 +586175,58 @@ instead of simply using converse functions (cf. ~ dfdisjALTV ).
disjALTVxrnidres $p |- Disj ( R |X. ( _I |` A ) ) $=
( cid wdisjALTV cres cxrn disjALTVid disjimxrnres ax-mp ) CDBCAEFDGABCHI $.

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Antisymmetry
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

$( Define the antisymmetric relation predicate. (Read: ` R ` is an
antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) $)
df-antisymrel $a |- ( AntisymRel R <->
( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) $.

$( Alternate definition of the antisymmetric relation predicate.
(Contributed by Peter Mazsa, 24-Jun-2024.) $)
dfantisymrel4 $p |- ( AntisymRel R <->
( ( R i^i `' R ) C_ _I /\ Rel R ) ) $=
( wantisymrel ccnv cin wcnvrefrel cid wss df-antisymrel relcnv relin2 ax-mp
wrel dfcnvrefrel4 mpbiran2 bianbi ) ABAACZDZEZALQFGZAHRSQLZPLTAIAPJKQMNO $.

${
$d R x y $.
$( Alternate definition of the antisymmetric relation predicate.
(Contributed by Peter Mazsa, 24-Jun-2024.) $)
dfantisymrel5 $p |- ( AntisymRel R <->
( A. x A. y ( ( x R y /\ y R x ) -> x = y ) /\ Rel R ) ) $=
( wantisymrel ccnv cin wcnvrefrel wrel cv wa wceq wi df-antisymrel relcnv
wbr wal relin2 ax-mp dfcnvrefrel5 cvv mpbiran2 brcnvin el2v imbi1i 2albii
wb bitri bianbi ) CDCCEZFZGZCHAIZBIZCOUMULCOJZULUMKZLZBPAPZCMUKULUMUJOZUO
LZBPAPZUQUKUTUJHZUIHVACNCUIQRABUJSUAUSUPABURUNUOURUNUFABULUMCCTTUBUCUDUEU
GUH $.
$}

${
$d A x y $. $d R x y $.
$( (Contributed by Peter Mazsa, 25-Jun-2024.) $)
antisymrelres $p |- ( AntisymRel ( R |` A ) <->
A. x e. A A. y e. A ( ( x R y /\ y R x ) -> x = y ) ) $=
( cres wantisymrel cv wbr wa wceq wi wal wcel wral wrel relres wb cvv elv
brres dfantisymrel5 mpbiran2 anbi12i bitri imbi1i 2albii r2alan 3bitri
an4 ) DCEZFZAGZBGZUJHZUMULUJHZIZULUMJZKZBLALZULCMZUMCMZIULUMDHZUMULDHZIZI
ZUQKZBLALVDUQKBCNACNUKUSUJODCPABUJUAUBURVFABUPVEUQUPUTVBIZVAVCIZIVEUNVGUO
VHUNVGQBCULUMDRTSUOVHQACUMULDRTSUCUTVBVAVCUIUDUEUFVDUQABCCUGUH $.
$}

${
$d A x y $. $d R x y $.
$( (Contributed by Peter Mazsa, 29-Jun-2024.) $)
antisymrelressn $p |- AntisymRel ( R |` { A } ) $=
( vx vy csn cres wantisymrel cv wbr wa wceq wi antisymressn dfantisymrel5
wal wrel relres mpbir2an ) BAEZFZGCHZDHZTIUBUATIJUAUBKLDOCOTPCDABMBSQCDTN
R $.
$}

$( (End of Peter Mazsa's mathbox.) $)
$( End $[ set-mbox-pm.mm $] $)

Expand Down

0 comments on commit 4a97e01

Please sign in to comment.