Skip to content

Commit

Permalink
dfcnvrefrel4 eqvrel1cossressn
Browse files Browse the repository at this point in the history
  • Loading branch information
mazsa committed May 27, 2024
1 parent 121032a commit d0c1ecd
Showing 1 changed file with 66 additions and 0 deletions.
66 changes: 66 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -551602,6 +551602,40 @@ equivalence of domain elementhood (equivalence is not necessary as
DIZPCJDABGZKEQLCHDABCMDQCNO $.
$}

$( Two ways to say that a relation is a subclass. (Contributed by Peter
Mazsa, 25-May-2024.) $)
cnvref4 $p |- ( Rel R ->
( R C_ S <-> R C_ ( S i^i ( dom R X. ran R ) ) ) ) $=
( wrel wss cdm crn cxp wa cin relssdmrn biantrud ssin syl6bb ) AC
ZABDZOAAEAFGZDZHABPIDNQOAJKABPLM $.

${
$d R x y $.
$( Two ways to say that a relation is a subclass of the identity relation.
(Contributed by Peter Mazsa, 26-Jun-2019.) $)
cnvref5 $p |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) $=
( wrel cid wss cv wbr wi wal wceq ssrel3 wb cvv ideqg elv imbi2i
2albii syl6bb ) CDCEFAGZBGZCHZTUAEHZIZBJAJUBTUAKZIZBJAJABCELUDUFA
BUCUEUBUCUEMBTUANOPQRS $.
$}

${
$d R x $.
$( The domain of the intersection of a reflexive class with its converse
is the intersection of the domain and range of the class. Compare with
~ dmin and ~ dfrefrel5 . (Contributed by Peter Mazsa,
25-May-2024.) $)
refdmincnv $p |- ( A. x e. ( dom R i^i ran R ) x R x ->
dom ( R i^i `' R ) = ( dom R i^i ran R ) ) $=
( cv wbr cdm crn cin wral ccnv wss wa wceq cvv brcnvg el2v anbi2i
wb anidm sylbir sylibr bitri ralbii df-rn ineq2i raleqi wcel brin
bitr4i vex breldm ralimi dfss3 dmin jctil eqss syl6eqr ) ACZUQBDZ
ABEZBFZGZHZBBIZGZEZUSVCEZGZVAVBVEVGJZVGVEJZKVEVGLVBVIVHVBURUQUQVC
DZKZAVGHZVIVLURAVGHVBVKURAVGVKURURKURVJURURVJURQAAUQUQMMBNOPURRUA
UBURAVAVGUTVFUSBUCUDZUEUHVLUQVEUFZAVGHVIVKVNAVGVKUQUQVDDVNUQUQBVC
UGUQUQVDAUIZVOUJSUKAVGVEULTSBVCUMUNVEVGUOTVMUP $.
$}

$( Absorption law for intersection. This is ~ inabs3 in Glauco Siliprandi's
Mathbox: when we cut and paste that into main, delete this. (Contributed
by Glauco Siliprandi, 17-Aug-2020.) $)
Expand Down Expand Up @@ -555354,6 +555388,22 @@ and disjoints ( ~ df-disjs , ~ df-disjALTV ).
UBPZUFLCQUEUIUFABUBUCCSTUA $.
$}

$( Alternate definition of the converse reflexive relation predicate.
(Contributed by Peter Mazsa, 25-May-2024.) $)
dfcnvrefrel4 $p |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) $=
( wcnvrefrel cid cdm crn cxp cin wss wrel wa dfcnvrefrel2 cnvref4
pm5.32ri bitr4i ) ABACADAEFGHZAIZJACHZPJAKPQOACLMN $.

${
$d R x y $.
$( Alternate definition of the converse reflexive relation predicate.
(Contributed by Peter Mazsa, 25-May-2024.) $)
dfcnvrefrel5 $p |- ( CnvRefRel R <->
( A. x A. y ( x R y -> x = y ) /\ Rel R ) ) $=
( wcnvrefrel cid wss wrel cv wbr wceq wi wal dfcnvrefrel4 cnvref5
bianim ) CDCEFCGAHZBHZCIPQJKBLALCMABCNO $.
$}

${
$d R r $.
$( Element of the class of converse reflexive relations. (Contributed by
Expand Down Expand Up @@ -556925,6 +556975,22 @@ of negatively transitive relations ( ~ df-negtrrels ) is equivalent to
ADBCQADBCSR $.
$}

${
$d A a u v w $. $d R a u v w $. $d V u v w $.
$( Cosets restricted to singleton is an equivalence relation.
(Contributed by Peter Mazsa, 27-May-2024.) $)
eqvrel1cossressn $p |- ( A e. V -> EqvRel ,~ ( R |` { A } ) ) $=
( vu vv vw va cv wbr wa wal wrex wb br1cossres el2v breq1 anbi12d
cvv rexsng syl5bb wcel csn cres ccoss wi weqvrel wceq an3 sylibrd
syl6bi alrimivv alrimiv eqvrelcoss3 sylibr ) ACUAZDHZEHZBAUBZUCZU
DZIZUQFHZUTIZJZUPVBUTIZUEZFKEKZDKUTUFUOVGDUOVFEFUOVDAUPBIZAVBBIZJ
ZVEUOVDVHAUQBIZJZVKVIJZJVJUOVAVLVCVMVAGHZUPBIZVNUQBIZJZGURLZUOVLV
AVRMDEGURUPUQBRRNOVQVLGACVNAUGZVOVHVPVKVNAUPBPZVNAUQBPZQSTVCVPVNV
BBIZJZGURLZUOVMVCWDMEFGURUQVBBRRNOWCVMGACVSVPVKWBVIWAVNAVBBPZQSTQ
VHVKVKVIUHUJVEVOWBJZGURLZUOVJVEWGMDFGURUPVBBRRNOWFVJGACVSVOVHWBVI
VTWEQSTUIUKULDEFUSUMUN $.
$}

$( Alternate definition of the coelement equivalence relations class. Other
alternate definitions should be based on ~ eqvrelcoss2 , ~ eqvrelcoss3 and
~ eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 22-Nov-2023.) $)
Expand Down

0 comments on commit d0c1ecd

Please sign in to comment.