Skip to content

Commit

Permalink
rewrite restricted quantifiers # 12 (metamath#4552)
Browse files Browse the repository at this point in the history
* rewrite rmo/reu, up to  ax-5

* move forgotten cbvralf
  • Loading branch information
wlammen authored Jan 11, 2025
1 parent e37738a commit fd2693e
Showing 1 changed file with 135 additions and 141 deletions.
276 changes: 135 additions & 141 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -30923,16 +30923,39 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
$.
$}

${
$d x z $. $d y z $. $d z A $. $d z ps $. $d z ph $.
cbvralf.1 $e |- F/_ x A $.
cbvralf.2 $e |- F/_ y A $.
cbvralf.3 $e |- F/ y ph $.
cbvralf.4 $e |- F/ x ps $.
cbvralf.5 $e |- ( x = y -> ( ph <-> ps ) ) $.
$( Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ~ ax-13 . Use the
weaker ~ cbvralfw when possible. (Contributed by NM, 7-Mar-2004.)
(Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) $)
cbvralf $p |- ( A. x e. A ph <-> A. y e. A ps ) $=
( vz cv wcel wi wal wral wsb nfv nfcri nfim nfs1v sbequ12 imbi12d cbvalv1
weq eleq1w nfsb sbequ sbie bitrdi bitri df-ral 3bitr4i ) CLEMZANZCOZDLEMZ
BNZDOZACEPBDEPUPKLEMZACKQZNZKOUSUOVBCKUOKRUTVACCKEFSACKUATCKUEUNUTAVACKEU
FACKUBUCUDVBURKDUTVADDKEGSACKDHUGTURKRKDUEZUTUQVABKDEUFVCVAACDQBAKDCUHABC
DIJUIUJUCUDUKACEULBDEULUM $.

$( Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ~ ax-13 . Use the
weaker ~ cbvrexfw when possible. (Contributed by FL, 27-Apr-2008.)
(Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) $)
cbvrexf $p |- ( E. x e. A ph <-> E. y e. A ps ) $=
( wn wral wrex nfn weq notbid cbvralf notbii dfrex2 3bitr4i ) AKZCELZKBKZ
DELZKACEMBDEMUBUDUAUCCDEFGADHNBCINCDOABJPQRACESBDEST $.
$}

$( Extend wff notation to include restricted existential uniqueness. $)
wreu $a wff E! x e. A ph $.

$( Extend wff notation to include restricted "at most one". $)
wrmo $a wff E* x e. A ph $.

$( Extend class notation to include the restricted class abstraction (class
builder). $)
crab $a class { x e. A | ph } $.

$( Define restricted "at most one".

Note: This notation is most often used to express that ` ph ` holds for
Expand All @@ -30959,6 +30982,113 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
(Contributed by NM, 22-Nov-1994.) $)
df-reu $a |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) $.

$( *** Theorems using axioms up to ax-4 only: *** $)

$( Restricted uniqueness in terms of "at most one". (Contributed by NM,
23-May-1999.) (Revised by NM, 16-Jun-2017.) $)
reu5 $p |- ( E! x e. A ph <-> ( E. x e. A ph /\ E* x e. A ph ) ) $=
( cv wcel wa weu wex wmo wreu wrex wrmo df-eu df-reu df-rex anbi12i 3bitr4i
df-rmo ) BDCEAFZBGSBHZSBIZFABCJABCKZABCLZFSBMABCNUBTUCUAABCOABCRPQ $.

$( Restricted existential uniqueness implies restricted "at most one."
(Contributed by NM, 16-Jun-2017.) $)
reurmo $p |- ( E! x e. A ph -> E* x e. A ph ) $=
( wreu wrex wrmo reu5 simprbi ) ABCDABCEABCFABCGH $.

$( Restricted unique existence implies restricted existence. (Contributed by
NM, 19-Aug-1999.) $)
reurex $p |- ( E! x e. A ph -> E. x e. A ph ) $=
( wreu wrex wrmo reu5 simplbi ) ABCDABCEABCFABCGH $.

$( Unrestricted "at most one" implies restricted "at most one". (Contributed
by NM, 16-Jun-2017.) $)
mormo $p |- ( E* x ph -> E* x e. A ph ) $=
( wmo cv wcel wa wrmo moan df-rmo sylibr ) ABDBECFZAGBDABCHALBIABCJK $.

$( Cancellation law for restricted at-most-one quantification. (Contributed
by Peter Mazsa, 24-May-2018.) $)
rmoanid $p |- ( E* x e. A ( x e. A /\ ph ) <-> E* x e. A ph ) $=
( cv wcel wa wmo wrmo anabs5 mobii df-rmo 3bitr4i ) BDCEZMAFZFZBGNBGNBCHABC
HONBMAIJNBCKABCKL $.

$( Cancellation law for restricted unique existential quantification.
(Contributed by Peter Mazsa, 12-Feb-2018.) $)
reuanid $p |- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph ) $=
( cv wcel wa weu wreu anabs5 eubii df-reu 3bitr4i ) BDCEZMAFZFZBGNBGNBCHABC
HONBMAIJNBCKABCKL $.

${
rmobiia.1 $e |- ( x e. A -> ( ph <-> ps ) ) $.
$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 16-Jun-2017.) $)
rmobiia $p |- ( E* x e. A ph <-> E* x e. A ps ) $=
( cv wcel wa wmo wrmo pm5.32i mobii df-rmo 3bitr4i ) CFDGZAHZCIOBHZCIACDJ
BCDJPQCOABEKLACDMBCDMN $.

$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 14-Nov-2004.) $)
reubiia $p |- ( E! x e. A ph <-> E! x e. A ps ) $=
( cv wcel wa weu wreu pm5.32i eubii df-reu 3bitr4i ) CFDGZAHZCIOBHZCIACDJ
BCDJPQCOABEKLACDMBCDMN $.
$}

${
rmobii.1 $e |- ( ph <-> ps ) $.
$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 16-Jun-2017.) $)
rmobii $p |- ( E* x e. A ph <-> E* x e. A ps ) $=
( wb cv wcel a1i rmobiia ) ABCDABFCGDHEIJ $.

$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 22-Oct-1999.) $)
reubii $p |- ( E! x e. A ph <-> E! x e. A ps ) $=
( wb cv wcel a1i reubiia ) ABCDABFCGDHEIJ $.
$}

$( Double restricted existential uniqueness, analogous to ~ 2eu2ex .
(Contributed by Alexander van der Vekens, 25-Jun-2017.) $)
2reu2rex $p |- ( E! x e. A E! y e. B ph -> E. x e. A E. y e. B ph ) $=
( wreu wrex reurex reximi syl ) ACEFZBDFKBDGACEGZBDGKBDHKLBDACEHIJ $.

$( *** Theorems using axioms up to ax-5 only: *** $)

${
$d x ph $.
rmobidva.1 $e |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) $.
$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 16-Jun-2017.) Avoid ~ ax-6 , ~ ax-7 ,
~ ax-12 . (Revised by Wolf Lammen, 23-Nov-2024.) $)
rmobidva $p |- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) ) $=
( cv wcel wa wmo wrmo pm5.32da mobidv df-rmo 3bitr4g ) ADGEHZBIZDJPCIZDJB
DEKCDEKAQRDAPBCFLMBDENCDENO $.
$( $j usage 'rmobidva' avoids 'ax-6' 'ax-7' 'ax-12'; $)

$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised
by Wolf Lammen, 14-Jan-2023.) $)
reubidva $p |- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) ) $=
( cv wcel wa weu wreu pm5.32da eubidv df-reu 3bitr4g ) ADGEHZBIZDJPCIZDJB
DEKCDEKAQRDAPBCFLMBDENCDENO $.
$}

${
$d x ph $.
rmobidv.1 $e |- ( ph -> ( ps <-> ch ) ) $.
$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 16-Jun-2017.) $)
rmobidv $p |- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) ) $=
( wb cv wcel adantr rmobidva ) ABCDEABCGDHEIFJK $.

$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 17-Oct-1996.) $)
reubidv $p |- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) ) $=
( wb cv wcel adantr reubidva ) ABCDEABCGDHEIFJK $.
$}

$( Extend class notation to include the restricted class abstraction (class
builder). $)
crab $a class { x e. A | ph } $.

$( Define a restricted class abstraction (class builder): ` { x e. A | ph } `
is the class of all sets ` x ` in ` A ` such that ` ph ( x ) ` is true.
Definition of [TakeutiZaring] p. 20.
Expand All @@ -30971,18 +31101,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
~ df-ral . (Contributed by NM, 22-Nov-1994.) $)
df-rab $a |- { x e. A | ph } = { x | ( x e. A /\ ph ) } $.

$( Cancellation law for restricted unique existential quantification.
(Contributed by Peter Mazsa, 12-Feb-2018.) $)
reuanid $p |- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph ) $=
( cv wcel wa weu wreu anabs5 eubii df-reu 3bitr4i ) BDCEZMAFZFZBGNBGNBCHABC
HONBMAIJNBCKABCKL $.

$( Cancellation law for restricted at-most-one quantification. (Contributed
by Peter Mazsa, 24-May-2018.) $)
rmoanid $p |- ( E* x e. A ( x e. A /\ ph ) <-> E* x e. A ph ) $=
( cv wcel wa wmo wrmo anabs5 mobii df-rmo 3bitr4i ) BDCEZMAFZFZBGNBGNBCHABC
HONBMAIJNBCKABCKL $.

$( The setvar ` x ` is not free in ` E! x e. A ph ` . (Contributed by NM,
19-Mar-1997.) $)
nfreu1 $p |- F/ x E! x e. A ph $=
Expand Down Expand Up @@ -31185,43 +31303,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
ELCDELARSDFAQBCGMNBDEOCDEOP $.
$}

${
$d x ph $.
reubidva.1 $e |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) $.
$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised
by Wolf Lammen, 14-Jan-2023.) $)
reubidva $p |- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) ) $=
( cv wcel wa weu wreu pm5.32da eubidv df-reu 3bitr4g ) ADGEHZBIZDJPCIZDJB
DEKCDEKAQRDAPBCFLMBDENCDENO $.
$}

${
$d x ph $.
reubidv.1 $e |- ( ph -> ( ps <-> ch ) ) $.
$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 17-Oct-1996.) $)
reubidv $p |- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) ) $=
( wb cv wcel adantr reubidva ) ABCDEABCGDHEIFJK $.
$}

${
reubiia.1 $e |- ( x e. A -> ( ph <-> ps ) ) $.
$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 14-Nov-2004.) $)
reubiia $p |- ( E! x e. A ph <-> E! x e. A ps ) $=
( cv wcel wa weu wreu pm5.32i eubii df-reu 3bitr4i ) CFDGZAHZCIOBHZCIACDJ
BCDJPQCOABEKLACDMBCDMN $.
$}

${
reubii.1 $e |- ( ph <-> ps ) $.
$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 22-Oct-1999.) $)
reubii $p |- ( E! x e. A ph <-> E! x e. A ps ) $=
( wb cv wcel a1i reubiia ) ABCDABFCGDHEIJ $.
$}

${
rmobida.1 $e |- F/ x ph $.
rmobida.2 $e |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) $.
Expand All @@ -31234,48 +31315,14 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is

${
$d x ph $.
rmobidva.1 $e |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) $.
$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 16-Jun-2017.) Avoid ~ ax-6 , ~ ax-7 ,
~ ax-12 . (Revised by Wolf Lammen, 23-Nov-2024.) $)
rmobidva $p |- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) ) $=
( cv wcel wa wmo wrmo pm5.32da mobidv df-rmo 3bitr4g ) ADGEHZBIZDJPCIZDJB
DEKCDEKAQRDAPBCFLMBDENCDENO $.
$( $j usage 'rmobidva' avoids 'ax-6' 'ax-7' 'ax-12'; $)

rmobidvaOLD.1 $e |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) $.
$( Obsolete version of ~ rmobidv as of 23-Nov-2024. (Contributed by NM,
16-Jun-2017.) (Proof modification is discouraged.)
(New usage is discouraged.) $)
rmobidvaOLD $p |- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) ) $=
( nfv rmobida ) ABCDEADGFH $.
$}

${
$d x ph $.
rmobidv.1 $e |- ( ph -> ( ps <-> ch ) ) $.
$( Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 16-Jun-2017.) $)
rmobidv $p |- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) ) $=
( wb cv wcel adantr rmobidva ) ABCDEABCGDHEIFJK $.
$}

${
rmobiia.1 $e |- ( x e. A -> ( ph <-> ps ) ) $.
$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 16-Jun-2017.) $)
rmobiia $p |- ( E* x e. A ph <-> E* x e. A ps ) $=
( cv wcel wa wmo wrmo pm5.32i mobii df-rmo 3bitr4i ) CFDGZAHZCIOBHZCIACDJ
BCDJPQCOABEKLACDMBCDMN $.
$}

${
rmobii.1 $e |- ( ph <-> ps ) $.
$( Formula-building rule for restricted existential quantifier (inference
form). (Contributed by NM, 16-Jun-2017.) $)
rmobii $p |- ( E* x e. A ph <-> E* x e. A ps ) $=
( wb cv wcel a1i rmobiia ) ABCDABFCGDHEIJ $.
$}

${
reueq1f.1 $e |- F/_ x A $.
reueq1f.2 $e |- F/_ x B $.
Expand Down Expand Up @@ -31347,32 +31394,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
JUEGZAHUMUEACKULUNAUJUCUDQSTSUAUB $.
$}

$( Unrestricted "at most one" implies restricted "at most one". (Contributed
by NM, 16-Jun-2017.) $)
mormo $p |- ( E* x ph -> E* x e. A ph ) $=
( wmo cv wcel wa wrmo moan df-rmo sylibr ) ABDBECFZAGBDABCHALBIABCJK $.

$( Restricted uniqueness in terms of "at most one". (Contributed by NM,
23-May-1999.) (Revised by NM, 16-Jun-2017.) $)
reu5 $p |- ( E! x e. A ph <-> ( E. x e. A ph /\ E* x e. A ph ) ) $=
( cv wcel wa weu wex wmo wreu wrex wrmo df-eu df-reu df-rex anbi12i 3bitr4i
df-rmo ) BDCEAFZBGSBHZSBIZFABCJABCKZABCLZFSBMABCNUBTUCUAABCOABCRPQ $.

$( Restricted unique existence implies restricted existence. (Contributed by
NM, 19-Aug-1999.) $)
reurex $p |- ( E! x e. A ph -> E. x e. A ph ) $=
( wreu wrex wrmo reu5 simplbi ) ABCDABCEABCFABCGH $.

$( Double restricted existential uniqueness, analogous to ~ 2eu2ex .
(Contributed by Alexander van der Vekens, 25-Jun-2017.) $)
2reu2rex $p |- ( E! x e. A E! y e. B ph -> E. x e. A E. y e. B ph ) $=
( wreu wrex reurex reximi syl ) ACEFZBDFKBDGACEGZBDGKBDHKLBDACEHIJ $.

$( Restricted existential uniqueness implies restricted "at most one."
(Contributed by NM, 16-Jun-2017.) $)
reurmo $p |- ( E! x e. A ph -> E* x e. A ph ) $=
( wreu wrex wrmo reu5 simprbi ) ABCDABCEABCFABCGH $.

$( Restricted "at most one" in term of uniqueness. (Contributed by NM,
16-Jun-2017.) $)
rmo5 $p |- ( E* x e. A ph <-> ( E. x e. A ph -> E! x e. A ph ) ) $=
Expand All @@ -31395,33 +31416,6 @@ atomic formula (class version of ~ elsb1 ). Usage of this theorem is
BCJBCDKABQCABPABPELMNO $.
$}

${
$d x z $. $d y z $. $d z A $. $d z ps $. $d z ph $.
cbvralf.1 $e |- F/_ x A $.
cbvralf.2 $e |- F/_ y A $.
cbvralf.3 $e |- F/ y ph $.
cbvralf.4 $e |- F/ x ps $.
cbvralf.5 $e |- ( x = y -> ( ph <-> ps ) ) $.
$( Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ~ ax-13 . Use the
weaker ~ cbvralfw when possible. (Contributed by NM, 7-Mar-2004.)
(Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) $)
cbvralf $p |- ( A. x e. A ph <-> A. y e. A ps ) $=
( vz cv wcel wi wal wral wsb nfv nfcri nfim nfs1v sbequ12 imbi12d cbvalv1
weq eleq1w nfsb sbequ sbie bitrdi bitri df-ral 3bitr4i ) CLEMZANZCOZDLEMZ
BNZDOZACEPBDEPUPKLEMZACKQZNZKOUSUOVBCKUOKRUTVACCKEFSACKUATCKUEUNUTAVACKEU
FACKUBUCUDVBURKDUTVADDKEGSACKDHUGTURKRKDUEZUTUQVABKDEUFVCVAACDQBAKDCUHABC
DIJUIUJUCUDUKACEULBDEULUM $.

$( Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ~ ax-13 . Use the
weaker ~ cbvrexfw when possible. (Contributed by FL, 27-Apr-2008.)
(Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) $)
cbvrexf $p |- ( E. x e. A ph <-> E. y e. A ps ) $=
( wn wral wrex nfn weq notbid cbvralf notbii dfrex2 3bitr4i ) AKZCELZKBKZ
DELZKACEMBDEMUBUDUAUCCDEFGADHNBCINCDOABJPQRACESBDEST $.
$}

${
$d x y A $.
cbvrmow.1 $e |- F/ y ph $.
Expand Down

0 comments on commit fd2693e

Please sign in to comment.