Skip to content

Commit

Permalink
Merge pull request #63 from mdhaber/gh17569
Browse files Browse the repository at this point in the history
DOC: 1.10 release notes updates for scipy.stats
  • Loading branch information
tylerjereddy authored Dec 9, 2022
2 parents 9ed40ba + 7b45056 commit 28ea073
Showing 1 changed file with 61 additions and 46 deletions.
107 changes: 61 additions & 46 deletions doc/release/1.10.0-notes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -182,52 +182,59 @@ New features
Cramer-von Mises, and Anderson-Darling).
- Improved `scipy.stats.bootstrap`: Default method ``'BCa'`` now supports
multi-sample statistics. Also, the bootstrap distribution is returned in the
result object, and the result object can be passed into the function to add
additional resamples or change the confidence interval level and type.
- Added a ``confidence_interval`` method to the result object returned by
`scipy.stats.ttest_1samp` and `scipy.stats.ttest_rel``.
result object, and the result object can be passed into the function as
parameter ``bootstrap_result`` to add additional resamples or change the
confidence interval level and type.
- Added maximum spacing estimation to `scipy.stats.fit`.
- Added `scipy.stats.contingency.odds_ratio` to compute both the conditional and
unconditional odds ratio for 2x2 contingency tables and corresponding
confidence intervals.
- Added the Poisson means test ("E-test") as `scipy.stats.poisson_means_test`.
- Added `scipy.stats.expectile`, which generalizes the expected value in the
same way as quantiles are a generalization of the median.
- Added new sample statistics.

- Added `scipy.stats.contingency.odds_ratio` to compute both the conditional
and unconditional odds ratios and corresponding confidence intervals for
2x2 contingency tables.
- Added `scipy.stats.directional_stats` to compute sample statistics of
n-dimensional directional data.
- Added `scipy.stats.expectile`, which generalizes the expected value in the
same way as quantiles are a generalization of the median.

- Added new statistical distributions.

- Added `scipy.stats.uniform_direction`, a multivariate distribution to
sample uniformly from the surface of a hypersphere.
- Added `scipy.stats.random_table`, a multivariate distribution to sample
uniformly from m x n contingency tables with provided marginals.
- Added `scipy.stats.truncpareto`, the truncated Pareto distribution.

- Improved the ``fit`` method of several distributions.

- `scipy.stats.skewnorm` and `scipy.stats.weibull_min` now use an analytical
solution when ``method='mm'``, which also serves a starting guess to improve
the performance of ``method='mle'``.
solution when ``method='mm'``, which also serves a starting guess to
improve the performance of ``method='mle'``.
- `scipy.stats.gumbel_r` and `scipy.stats.gumbel_l`: analytical maximum
likelihood estimates have been extended to the cases in which location or
scale are fixed by the user.
- Analytical maximum likelihood estimates have been added for
`scipy.stats.powerlaw`.

- Improved random variate sampling of several distributions.

- Drawing multiple samples from `scipy.stats.matrix_normal`,
`scipy.stats.ortho_group`, `scipy.stats.special_ortho_group`, and
`scipy.stats.unitary_group` is faster.
- The ``rvs`` method of `scipy.stats.vonmises` now wraps to the interval
``[-np.pi, np.pi]``
``[-np.pi, np.pi]``.
- Improved the reliability of `scipy.stats.loggamma` ``rvs`` method for small
values of the shape parameter.

- Improved the speed and/or accuracy of functions of several statistical
distributions.

- Added `scipy.stats.Covariance` for better speed, accuracy, and user control
in multivariate normal calculations.
- `scipy.stats.skewnorm` methods ``cdf``, ``sf``, ``ppf``, and ``isf``
methods now use the implementations from Boost, improving speed while
maintaining accuracy. The calculation of higher-order moments is also faster
and more accurate.
maintaining accuracy. The calculation of higher-order moments is also
faster and more accurate.
- `scipy.stats.invgauss` methods ``ppf`` and ``isf`` methods now use the
implementations from Boost, improving speed and accuracy.
- `scipy.stats.invweibull` methods ``sf`` and ``isf`` are more accurate for
Expand All @@ -244,7 +251,8 @@ New features
allowing the user to change the integration limit from -inf to a desired
value.
- Improved the robustness of ``entropy`` of `scipy.stats.vonmises` for large
concentration values
concentration values.

- Enhanced `scipy.stats.gaussian_kde`.

- Added `scipy.stats.gaussian_kde.marginal`, which returns the desired
Expand All @@ -257,46 +265,53 @@ New features
`scipy.stats.gaussian_kde` for improved multithreading performance.
- Replaced explicit matrix inversion with Cholesky decomposition for speed
and accuracy.
- Statistical test functions that previously returned plain tuples now return
bunches, allowing attributes to be accessed by name. The `scipy.stats`
functions ``combine_pvalues``, ``fisher_exact``, ``chi2_contingency``,
``median_test`` and ``mood`` have been updated.
- The result objects returned by statistical test functions now consistently
use the attribute names ``statistic`` and ``pvalue``. Old attribute names are
allowed for backward compatibility. The `scipy.stats` functions
``multiscale_graphcorr``, ``anderson_ksamp``, ``binomtest``, ``crosstab``,
``pointbiserialr``, ``spearmanr``, ``kendalltau`` and ``weightedtau`` have
been updated.
- `scipy.stats.anderson` now returns the parameters of the fitted distribution
in a `scipy.stats._result_classes.FitResult` object.
- Kolmogorov-Smirnov tests (e.g. `scipy.stats.kstest`) return more information:
the location (argmax) at which the statistic is calculated, and the variant
of the statistic used.
- Improved the performance of `scipy.stats.cramervonmises_2samp` and
`scipy.stats.ks_2samp` with ``method='exact'``.
- Improved the performance of `scipy.stats.siegelslopes`.
- Improved the performance of `scipy.stats.hdquantile_sd`
- Added the ``scramble`` optional argument to `scipy.stats.qmc.LatinHypercube`. It
replaces ``centered`` which is now deprecated.

- Enhanced the result objects returned by many `scipy.stats` functions

- Added a ``confidence_interval`` method to the result object returned by
`scipy.stats.ttest_1samp` and `scipy.stats.ttest_rel`.
- The `scipy.stats` functions ``combine_pvalues``, ``fisher_exact``,
``chi2_contingency``, ``median_test`` and ``mood`` now return
bunch objects rather than plain tuples, allowing attributes to be
accessed by name.
- Attributes of the result objects returned by ``multiscale_graphcorr``,
``anderson_ksamp``, ``binomtest``, ``crosstab``, ``pointbiserialr``,
``spearmanr``, ``kendalltau``, and ``weightedtau`` have been renamed to
``statistic`` and ``pvalue`` for consistency throughout `scipy.stats`.
Old attribute names are still allowed for backward compatibility.
- `scipy.stats.anderson` now returns the parameters of the fitted
distribution in a `scipy.stats._result_classes.FitResult` object.
- The ``plot`` method of `scipy.stats._result_classes.FitResult` now accepts
a ``plot_type`` parameter; the options are ``'hist'`` (histogram, default),
``'qq'`` (Q-Q plot), ``'pp'`` (P-P plot), and ``'cdf'`` (empirical CDF
plot).
- Kolmogorov-Smirnov tests (e.g. `scipy.stats.kstest`) now return the
location (argmax) at which the statistic is calculated and the variant
of the statistic used.

- Improved the performance of several `scipy.stats` functions.

- Improved the performance of `scipy.stats.cramervonmises_2samp` and
`scipy.stats.ks_2samp` with ``method='exact'``.
- Improved the performance of `scipy.stats.siegelslopes`.
- Improved the performance of `scipy.stats.hdquantile_sd`.
- Improved the performance of `scipy.stats.binned_statistic_dd` for several
NumPy statistics, and binned statistics methods now support complex data.

- Added the ``scramble`` optional argument to `scipy.stats.qmc.LatinHypercube`.
It replaces ``centered``, which is now deprecated.
- Added a parameter ``optimization`` to all `scipy.stats.qmc.QMCEngine`
subclasses to improve characteristics of the quasi-random variates
- Added `scipy.stats.directional_stats` to compute sample statistics of
n-dimensional directional data.
- The ``plot`` method of `scipy.stats._result_classes.FitResult` now accepts a
``plot_type`` parameter; the options are ``'hist'`` (histogram, default),
``'qq'`` (Q-Q plot), ``'pp'`` (P-P plot), and ``'cdf'`` (empirical CDF plot).
subclasses to improve characteristics of the quasi-random variates.
- Added tie correction to `scipy.stats.mood`.
- Added tutorials for resampling methods in `scipy.stats`.
- `scipy.stats.bootstrap`, `scipy.stats.permutation_test`, and
`scipy.stats.monte_carlo_test` now automatically detect whether the provided
``statistic`` is vectorized, so passing the ``vectorized`` argument
explicitly is no longer required to take advantage of vectorized statistics.
- Improved speed of `scipy.stats.permutation_test` for permutation types
- Improved the speed of `scipy.stats.permutation_test` for permutation types
``'samples'`` and ``'pairings'``.
- Improved the performance of `scipy.stats.binned_statistic_dd` for several
NumPy statistics, and binned statistics methods now support complex data.
- Added ``axis``, ``nan_policy``, and masked array support to
`scipy.stats.jarque_bera`
`scipy.stats.jarque_bera`.
- Added the ``nan_policy`` optional argument to `scipy.stats.rankdata`.


Expand Down

0 comments on commit 28ea073

Please sign in to comment.