Skip to content

meMeta-a11y/OneCLick

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 OneCLick Keyword Retriever

OneCLick is a lightweight, open-source Streamlit application for enriching bibliometric datasets by retrieving missing keywords from the OpenAlex API.

It streamlines preprocessing for tools like VOSviewer, CiteSpace, and Bibliometrix, and outputs reproducible, analysis-ready files for downstream research.


✨ Features

  • 📁 Upload Input:

    • Accepts .xlsx files with a column named DI (DOI).
  • 🔄 DOI-Based Keyword Retrieval:

    • Sends DOI queries to OpenAlex and retrieves enriched metadata keywords.
  • ⚠️ Error & Warning Handling:

    • Invalid DOIs, network timeouts, or rate-limit errors → Failed_DOIs.csv
    • Valid DOIs without keywords → flagged as [WARNING:NoKeywords] in NoKeyword_DOIs.csv
  • 📊 Latency Logging:

    • Per-DOI request latency is tracked and summarized (median & IQR)
    • Full request log saved as Latency_Log.csv
  • 📤 Outputs:

    • Enriched dataset → openalex_keywords.csv / .xlsx
    • Downloadable error & warning logs
    • Latency logs for reproducibility and benchmarking

🛠️ Installation

# Clone the repository
git clone https://github.com/meMeta-a11y/oneclick.git
cd oneclick

# Install dependencies
pip install -r requirements.txt

Run the Streamlit application:

streamlit run streamlit_app.py

📊 Example Datasets

We provide three benchmark datasets for reproducibility and testing:

Dataset DOIs Purpose
Pilot 37 Quick exploratory testing
Intermediate 100 Lightweight benchmarking
Validation 1,097 Large-scale robustness testing

All datasets are available in the example_data/ directory and are permanently archived on Zenodo.


⚡ Performance Benchmarking

Validation experiments demonstrate robustness and scalability across dataset sizes:

Dataset DOIs Error DOIs No-Keyword DOIs Success Rate Median Latency per DOI (seconds, IQR)
Pilot 37 0 0 100.00% 0.30 (0.29 – 0.31)
Intermediate 100 0 26 74.00% 0.30 (0.29 – 0.32)
Validation 1,097 0 205 81.31% 0.30 (0.29 – 0.32)

🧪 Benchmarks were conducted on Streamlit Cloud (Aug 2025) using a Linux environment (4 GB RAM, 100 Mbps network). Performance may vary depending on network conditions and OpenAlex API rate limits.


🚀 Quick-Start: VOSviewer Workflow

Follow these steps to integrate OneCLick outputs with VOSviewer:

  1. Open VOSviewerCreate → Map based on network data
  2. Input: Choose your enriched openalex_keywords.csv
  3. Mapping: Set OpenAlex_KW as the keyword field
  4. Options: Select co-occurrence counting method (e.g., Full counting)
  5. Generate: Visualize the keyword network

📚 Additional workflows are described in the manuscript (Section 2.12).


📁 Repository Structure

oneclick/
├── streamlit_app.py         # Main application
├── requirements.txt         # Dependencies
├── example_data/            # Example DOI datasets
│   ├── pilot_37.xlsx
│   ├── intermediate_100.xlsx
│   └── validation_1097.xlsx
├── outputs/                 # Example outputs & logs
│   ├── openalex_keywords.csv
│   ├── Failed_DOIs.csv
│   ├── NoKeyword_DOIs.csv
│   └── Latency_Log.csv
└── README.md               # Documentation

📚 Citation

If you use OneCLick in your research, please cite it using one of the following formats:

📘 APA

Wei, L. K. (2025). OneCLick: Streamlined metadata enrichment using machine-inferred keywords from OpenAlex. SoftwareX, 31, 102353.

📙 Chicago

Wei, Loo Keat. "OneCLick: Streamlined metadata enrichment using machine-inferred keywords from OpenAlex." SoftwareX 31 (2025): 102353.

📗 Harvard

Wei, L.K., 2025. OneCLick: Streamlined metadata enrichment using machine-inferred keywords from OpenAlex. SoftwareX, 31, p.102353.

📕 Vancouver

Wei LK. OneCLick: Streamlined metadata enrichment using machine-inferred keywords from OpenAlex. SoftwareX. 2025 Sep 1;31:102353.


🌐 About


📜 License

This project is licensed under the Apache-2.0 License - see the LICENSE file for details.


💡 OneCLick is developed to accelerate bibliometric research workflows by automating metadata enrichment and preparing datasets for network analysis and visualization. Contributions, issues, and pull requests are always welcome!