Skip to content

Cats vs Dogs image classification with transfer learning from vgg16

License

Notifications You must be signed in to change notification settings

melihaltun/cats_vs_dogs_recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

catsVsDogs

Cats vs Dogs image classification with transfer learning from vgg16 model

A deep CNN implementation that modifies the last few layers of the pretrained vgg16 model and repurposes it to classify cat and dog images.

image

Depending on the selected subset of training and testing images, 97 to 99% accuracy is usually achieved.

The code needs tensorflow, keras, numpy, pandas, matplotlib, sklearn, itertools and glob installed in the Python environment.

Download the dataset from: https://www.kaggle.com/competitions/dogs-vs-cats/data

Extract the contents of train folder to "./cats_vs_dogs/" folder under the project folder

During the first run the code will do a random sampling of the data and form the train, test, validation sets. They will be reused in the subsequent runs. Number of images in each set can be modified as needed. If a new train, validation & test set is needed, delete the "test", "train", and "valid" folders under "./cats_vs_dogs/"

GPU parallelization is turned off, but it can be turned on by uncommenting the relevant line (with CUDA, CUDNN and Zlib installed).

Recommended configuration for GPU parallelization is: Python 3.8, Tensorflow 2.10.0, CUDA 11.2, CUDNN 8.8.1 and Zlib.

About

Cats vs Dogs image classification with transfer learning from vgg16

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages