Skip to content

memkite/dnngraph

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DNNGraph - A deep neural network model generation DSL in Haskell

It consists of several parts:

  • A DSL for specifying the model. This uses the lens library for elegant, composable constructions, and the fgl graph library for specifying the network layout.
  • A set of optimization passes that run over the graph representation to improve the performance of the model. For example, we can take advantage of the fact that several layers types (ReLU, Dropout) can operate in-place.
  • A set of backends to generate code for the platform. Currently, we generate
    • Caffe (by generating model prototxt files)
    • Torch (by generating Lua scripts)
  • A set of useful CLI tools for exporting, visualizing and understanding a model (visualization of network structure, parameter density)

For a guided example, see a demonstration IHaskell Notebook.

DSL Examples

The following script generates a replica of https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt.

AlexNet

import           Control.Lens
import           Control.Monad

import           NN.DSL
import           NN.Examples.ImageNet
import           NN.Graph

alexTrain = train & cropSize' 227 & batchSize' 256 & mirror' True
alexTest = test & cropSize' 227 & batchSize' 50 & mirror' False

alexLrn = lrn & localSize' 5 & alphaLRN' 0.0001 & betaLRN' 0.75
alexConv = conv & param' alexMult & weightFillerC' (gaussian 0.01) & biasFillerC' zero
alexIP n = ip n & param' alexMult & weightFillerIP' (gaussian 0.005) & biasFillerIP' (constant 0.1)
alexPool = maxPool & sizeP' 3

alexMult = [def & lrMult' 1 & decayMult' 1, -- weights
            def & lrMult' 2 & decayMult' 0] -- biases

-- |Model
conv1 = alexConv & numOutputC' 96 & kernelSizeC' 11 & strideC' 4
conv2 = alexConv & numOutputC' 256 & padC' 2 & kernelSizeC' 5 & groupC' 2
conv3 = alexConv & numOutputC' 384 & padC' 1 & kernelSizeC' 3
conv4 = alexConv & numOutputC' 384 & padC' 1 & kernelSizeC' 3 & groupC' 2 & biasFillerC' (constant 0.1)
conv5 = alexConv & numOutputC' 256 & padC' 1 & kernelSizeC' 3 & groupC' 2 & biasFillerC' (constant 0.1)

alexNet = do
  -- Set up the model
  (input', representation) <-
      sequential [
           -- Convolutional Layers
           conv1, relu, alexLrn, alexPool & strideP' 3,
           conv2, relu, alexLrn, alexPool & strideP' 2,
           conv3, relu,
           conv4, relu,
           conv5, relu, alexPool & strideP' 2,
           -- FC Layers
           alexIP 4096, relu, dropout 0.5,
           alexIP 4096, relu, dropout 0.5,
           alexIP 1000 & weightFillerIP' (gaussian 0.01) & biasFillerIP' zero]

  forM_ [alexTrain, alexTest] $ attach (To input')
  forM_ [accuracy 1, accuracy 5, softmax] $ attach (From representation)

or visually, using NN.Visualize,

http://i.imgur.com/1hKlPdA.png

GoogLeNet

The following script generates a replica of https://github.com/BVLC/caffe/blob/master/models/bvlc_googlenet/train_val.prototxt

module NN.Examples.GoogLeNet where

import           Gen.Caffe.FillerParameter       as FP
import           Gen.Caffe.InnerProductParameter as IP
import           Gen.Caffe.LayerParameter        as LP

import           Control.Lens
import           Control.Monad
import           Data.Sequence                   (singleton)
import           Data.Word

import           NN
import           NN.Examples.ImageNet


googleTrain = train & mirror' True & batchSize' 32 & cropSize' 224
googleTest = test & mirror' False & batchSize' 50 & cropSize' 224

googleMult = [def & lrMult' 1 & decayMult' 1, -- weights
              def & lrMult' 2 & decayMult' 0] -- biases
googleConv = conv & param' googleMult & biasFillerC' (constant 0.2)
googleLRN = lrn & localSize' 5 & alphaLRN' 0.0001 & betaLRN' 0.75
googlePool = maxPool & sizeP' 3 & strideP' 2
googleIP n = ip n & param' googleMult

conv1 = googleConv & numOutputC' 64 & padC' 3 & kernelSizeC' 7 & strideC' 2 & weightFillerC' (xavier 0.1)
conv2 = googleConv & numOutputC' 192 & padC' 1 & kernelSizeC' 3 & weightFillerC' (xavier 0.03)

topPool = avgPool & sizeP' 7 & strideP' 1
topFc = googleIP 1000 & biasFillerIP' (constant 0) & weightFillerIP' (xavier 0.0)
        -- Weird, but in Caffe replication
        & _inner_product_param._Just.IP._weight_filler._Just._std .~ Nothing

data Inception = Inception {_1x1, _3x3reduce, _3x3, _5x5reduce, _5x5, _poolProj :: Word32}

inception :: Node -> Inception -> NetBuilder Node
inception input Inception{..} = do
  columns' <- mapM sequential columns
  concat'' <- layer' concat'
  forM_ columns' $ \(bottom, top) -> do
                                  input >-> bottom
                                  top >-> concat''
  return concat''
    where
      columns = [
       [googleConv & numOutputC' _1x1  & kernelSizeC' 1 & weightFillerC' (xavier 0.03), relu],
       [googleConv & numOutputC' _3x3reduce & kernelSizeC' 1 & weightFillerC' (xavier 0.09), relu, googleConv & numOutputC' _3x3 & kernelSizeC' 3 & weightFillerC' (xavier 0.03) & padC' 1, relu],
       [googleConv & numOutputC' _5x5reduce & kernelSizeC' 1 & weightFillerC' (xavier 0.2), relu, googleConv & numOutputC' _5x5 & kernelSizeC' 5 & weightFillerC' (xavier 0.03) & padC' 2, relu],
       [maxPool& sizeP' 3 & strideP' 3 & padP' 1, googleConv & numOutputC' _poolProj & kernelSizeC' 1 & weightFillerC' (xavier 0.1), relu]]

intermediateClassifier :: Node -> NetBuilder ()
intermediateClassifier source = do
  (input, representation) <- sequential [pool1, conv1', relu, fc1, relu, dropout 0.7, fc2]
  source >-> input

  forM_ [accuracy 1, accuracy 5, softmax & _loss_weight <>~ singleton 0.3] $ attach (From representation)
    where
      pool1 = avgPool & sizeP' 5 & strideP' 3
      conv1' = googleConv & numOutputC' 128 & kernelSizeC' 1 & weightFillerC' (xavier 0.08)
      fc1 = googleIP 1024 & weightFillerIP' (xavier 0.02) & biasFillerIP' (constant 0.2)
      fc2 = googleIP 1000 & weightFillerIP' (xavier 0.0009765625) & biasFillerIP' (constant 0)

-- What to do at each row in the inner column?
data Row = I Inception | Classifier | MaxPool

insertRow :: Node -> Row -> NetBuilder Node
insertRow input (I inceptor) = inception input inceptor
insertRow input Classifier = do
  intermediateClassifier input
  return input
insertRow input MaxPool = do
  node <- layer' googlePool
  input >-> node
  return node

googLeNet :: NetBuilder ()
googLeNet = do
  (input, initial) <- sequential [conv1, relu, googlePool, googleLRN, conv2, relu, googleLRN, googlePool]

  top <- foldM insertRow initial [
             I $ Inception 64 96 128 16 32 32,
             I $ Inception 128 128 192 32 96 64,
             MaxPool,
             I $ Inception 192 96 208 16 48 64,
             Classifier,
             I $ Inception 150 112 224 24 64 64,
             I $ Inception 128 128 256 24 64 64,
             I $ Inception 112 144 288 32 64 64,
             Classifier,
             I $ Inception 256 160 320 32 128 128,
             MaxPool,
             I $ Inception 256 160 320 32 128 128,
             I $ Inception 384 192 384 48 128 128]

  (_, representation) <- with top >- sequential [topPool, dropout 0.4, topFc]

  forM_ [accuracy 1, accuracy 5, softmax] $ attach (From representation)
  forM_ [googleTrain, googleTest] $ attach (To input)

main :: IO ()
main = cli googLeNet

CLI Usage

In the GoogLeNet example, above, we included the line main = cli googLeNet. This generates a CLI for our model that can be accessed with runhaskell /path/to/our/model.hs. Currently, we can

  • export to Caffe
  • export to Torch
  • visualize the network structure.

For example:

$ runhaskell NN/Examples/GoogLeNet.hs --help
Usage: GoogLeNet.hs COMMAND

Available options:
  -h,--help                Show this help text

Available commands:
  caffe                    Generate a Caffe .prototxt to run with `caffe train
                           --model=<>
  torch                    Generate Lua code to be `require`'d into an existing
                           Torch script
  pdf                      Generate a PDF visualizing the model's connectivity

$ runhaskell NN/Examples/GoogLeNet.hs caffe --output /tmp/x.prototxt
$ runhaskell NN/Examples/GoogLeNet.hs pdf --output /tmp/x.pdf

Caffe Backend

The Caffe backend generates a Caffe .prototxt that can be run with caffe train --model=<>, without any modification necessary.

Torch Backend

The Torch backend generates Lua code that can be imported directly into an existing Torch script.

Anything network that can be expressed as a nested combination of computational layers, combined with nn.Sequential, nn.Concat, nn.ModelParallel, nn.DataParallel etc can be generated under this framework.

For an example output, the model specified as

alexTrain = train & cropSize' 227 & batchSize' 256 & mirror' True
alexTest = test & cropSize' 227 & batchSize' 50 & mirror' False

alexConv = conv & param' alexMult & weightFillerC' (gaussian 0.01) & biasFillerC' zero
alexPool = maxPool & sizeP' 3

conv1 = alexConv & numOutputC' 96 & kernelSizeC' 11 & strideC' 4
pool1 = alexPool & strideP' 3

model = do
  (input', representation) <- sequential [conv1, relu, pool1]
  forM_ [alexTrain, alexTest] $ attach (To input')
  forM_ [accuracy 1, accuracy 5, softmax] $ attach (From representation)

generates the following code:

require("nn")
require("cunn")
local seq0 = nn.Sequential()
seq0:add(nn.SpatialConvolutionMM(nil, 96, 11, 11, 4, 4, 0))
seq0:add(nn.Threshold())
seq0:add(nn.SpatialMaxPooling(3, 3, 3, 3))
seq0:add(nn.LogSoftMax())
local criterion1 = nn.ClassNLLCriterion()
return seq0, criterion1

For a more complicated example, the network specified as

do
  x <- layer' relu
  (_, y) <- with x >- sequential [conv, relu, maxPool, conv, relu]
  (_, z) <- with x >- sequential [conv, relu, maxPool, conv, relu]
  concat'' <- layer' concat'

  y >-> concat''
  z >-> concat''
  _ <- with concat'' >- sequential [ip 4096, relu, dropout 0.5, ip 1000, softmax]
  return ()

that looks like

http://i.imgur.com/dsqgYna.png

will generate

require("nn")
local seq0 = nn.Sequential()
local mod1 = nn.Threshold()
seq0:add(mod1)
local concat2 = nn.DepthConcat()
local seq3 = nn.Sequential()
local mod4 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq3:add(mod4)
local mod5 = nn.Threshold()
seq3:add(mod5)
local mod6 = nn.SpatialMaxPooling(nil, nil, 1, 1)
seq3:add(mod6)
local mod7 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq3:add(mod7)
local mod8 = nn.Threshold()
seq3:add(mod8)
concat2:add(seq3)
local seq9 = nn.Sequential()
local mod10 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq9:add(mod10)
local mod11 = nn.Threshold()
seq9:add(mod11)
local mod12 = nn.SpatialMaxPooling(nil, nil, 1, 1)
seq9:add(mod12)
local mod13 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq9:add(mod13)
local mod14 = nn.Threshold()
seq9:add(mod14)
concat2:add(seq9)
seq0:add(concat2)
local mod15 = nn.Linear(nil, 4096)
seq0:add(mod15)
local mod16 = nn.Threshold()
seq0:add(mod16)
local mod17 = nn.Dropout(0.5)
seq0:add(mod17)
local mod18 = nn.Linear(nil, 1000)
seq0:add(mod18)
local mod19 = nn.LogSoftMax()
seq0:add(mod19)
local criteria20 = nn.ClassNLLCriterion()
return seq0, criteria20

Visualization Examples

The NN.Visualize module provides some plotting tools. To use these,

import NN.Visualize

visualize :: Net -> DotGraph Node
png :: FilePath -> DotGraph Node -> IO FilePath

-- For example, to visualize GoogLeNet to a file
file :: FilePath
(frontend googLeNet & visualize & png file) :: IO FilePath

An example output is (click for higher resolution):

http://i.imgur.com/ScvjNmT.jpg

Parameter Sweeps

To use this, write your model generation script as a Haskell file, and then (for example)

caffe train --model <(runhaskell Model.hs) --solver=solver.prototxt

To perform a parameter sweep, use the parameterizing

for model in $(runhaskell Model.hs); do
    caffe train --model=$model --solver=solver.prototxt
done

About

A DSL for deep neural networks, supporting Caffe and Torch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Haskell 50.4%
  • Protocol Buffer 46.2%
  • Python 2.7%
  • Other 0.7%