Skip to content

Commit

Permalink
Merge pull request #1175 from mayooear/feat/gemini-sub-links
Browse files Browse the repository at this point in the history
fix: update gemini library. extract pdf links from scraped content
  • Loading branch information
ericciarla authored Feb 12, 2025
2 parents a1b7d6e + 32f9897 commit 582bbf8
Showing 1 changed file with 107 additions and 63 deletions.
170 changes: 107 additions & 63 deletions examples/gemini-2.0-crawler/gemini-2.0-crawler.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,23 @@
import os
from firecrawl import FirecrawlApp
import json
import re
import requests
from google.generativeai import types as genai_types
from requests.exceptions import RequestException
from dotenv import load_dotenv
import google.generativeai as genai
import google.genai as genai
# Load environment variables
load_dotenv()

# Retrieve API keys from environment variables
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")

# Initialize the FirecrawlApp and Gemini client
app = FirecrawlApp(api_key=firecrawl_api_key)
client = genai.Client(api_key=gemini_api_key) # Create Gemini client
model_name = "gemini-2.0-flash"
types = genai.types

# ANSI color codes

Expand All @@ -19,28 +32,37 @@ class Colors:
RESET = '\033[0m'


def is_pdf_url(u: str) -> bool:
return u.lower().split('?')[0].endswith('.pdf')
def pdf_size_in_mb(data: bytes) -> float:
"""Utility function to estimate PDF size in MB from raw bytes."""
return len(data) / (1024 * 1024)


def is_image_url(u: str) -> bool:
exts = ['.jpg', '.jpeg', '.png', '.gif', '.webp', '.heic', '.heif']
url_no_q = u.lower().split('?')[0]
return any(url_no_q.endswith(ext) for ext in exts)


def gemini_extract_pdf_content(pdf_url):
def gemini_extract_pdf_content(pdf_url, objective):
"""
Downloads a PDF from pdf_url, then calls Gemini to extract text.
Returns a string with the extracted text only.
"""
try:
pdf_data = requests.get(pdf_url, timeout=15).content
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content([
genai_types.Part.from_bytes(pdf_data, mime_type='application/pdf'),
"Extract all textual information from this PDF. Return only text."
])
size_mb = pdf_size_in_mb(pdf_data)
if size_mb > 15:
print(
f"{Colors.YELLOW}Warning: PDF size is {size_mb} MB. Skipping PDF extraction.{Colors.RESET}")
return ""

prompt = f"""
The objective is: {objective}.
From this PDF, extract only the text that helps address this objective.
If it contains no relevant info, return an empty string.
"""
response = client.models.generate_content(
model=model_name,
contents=[
types.Part.from_bytes(
data=pdf_data, mime_type="application/pdf"),
prompt
]
)
return response.text.strip()
except Exception as e:
print(f"Error using Gemini to process PDF '{pdf_url}': {str(e)}")
Expand All @@ -51,45 +73,53 @@ def gemini_extract_image_data(image_url):
"""
Downloads an image from image_url, then calls Gemini to:
1) Summarize what's in the image
2) Return bounding boxes for the main objects
Returns a string merging the summary and bounding box info.
Returns a string with the summary.
"""
try:
print(f"Gemini IMAGE extraction from: {image_url}")
image_data = requests.get(image_url, timeout=15).content
model = genai.GenerativeModel('gemini-pro')

# 1) Summarize
resp_summary = model.generate_content([
genai_types.Part.from_bytes(image_data, mime_type='image/jpeg'),
"Describe the contents of this image in a short paragraph."
resp_summary = client.models.generate_content([
"Describe the contents of this image in a short paragraph.",
types.Part.from_bytes(data=image_data, mime_type="image/jpeg"),
])
summary_text = resp_summary.text.strip()

# 2) Get bounding boxes
resp_bbox = model.generate_content([
genai_types.Part.from_bytes(image_data, mime_type='image/jpeg'),
("Return bounding boxes for the objects in this image in the "
"format: [{'object':'cat','bbox':[y_min,x_min,y_max,x_max]}, ...]. "
"Coordinates 0-1000. Output valid JSON only.")
])
bbox_text = resp_bbox.text.strip()

return f"**Image Summary**:\n{summary_text}\n\n**Bounding Boxes**:\n{bbox_text}"
return f"**Image Summary**:\n{summary_text}"
except Exception as e:
print(f"Error using Gemini to process Image '{image_url}': {str(e)}")
return ""


# Load environment variables
load_dotenv()
def extract_urls_from_markdown(markdown_text):
"""
Simple regex-based approach to extract potential URLs from a markdown string.
We look for http(s)://someurl up until a space or parenthesis or quote, etc.
"""
pattern = r'(https?://[^\s\'")]+)'
found = re.findall(pattern, markdown_text)
return list(set(found)) # unique them

# Retrieve API keys from environment variables
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")

# Initialize the FirecrawlApp and Gemini client
app = FirecrawlApp(api_key=firecrawl_api_key)
genai.configure(api_key=gemini_api_key) # Configure Gemini API
def detect_mime_type(url, timeout=8):
"""
Attempt a HEAD request to detect the Content-Type. Return 'pdf', 'image' or None if undetermined.
Also validates image extensions for supported formats.
"""
try:
resp = requests.head(url, timeout=timeout, allow_redirects=True)
ctype = resp.headers.get('Content-Type', '').lower()
exts = ['.jpg', '.jpeg', '.png', '.gif', '.webp', '.heic', '.heif']

if 'pdf' in ctype:
return 'pdf'
elif ctype.startswith('image/') and any(url.lower().endswith(ext) for ext in exts):
return 'image'
else:
return None
except RequestException as e:
print(f"Warning: HEAD request failed for {url}. Error: {e}")
return None


def find_relevant_page_via_map(objective, url, app):
Expand All @@ -105,8 +135,10 @@ def find_relevant_page_via_map(objective, url, app):
print(
f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}")
# Use gemini-pro instead of gemini-2.0-flash
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(map_prompt)
response = client.models.generate_content(
model=model_name,
contents=[map_prompt]
)

map_search_parameter = response.text.strip()
print(
Expand Down Expand Up @@ -160,8 +192,10 @@ def find_relevant_page_via_map(objective, url, app):
{json.dumps(links, indent=2)}"""

print(f"{Colors.YELLOW}Ranking URLs by relevance to objective...{Colors.RESET}")
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(rank_prompt)
response = client.models.generate_content(
model=model_name,
contents=[rank_prompt]
)

print(f"{Colors.MAGENTA}Debug - Raw Gemini response:{Colors.RESET}")
print(response.text)
Expand Down Expand Up @@ -228,28 +262,35 @@ def find_objective_in_top_pages(map_website, objective, app):

for link in top_links:
print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}")
# Include 'links' so we can parse sub-links for PDFs or images
scrape_result = app.scrape_url(
link, params={'formats': ['markdown', 'links']})
link, params={'formats': ['markdown']})
print(
f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}")

# Check sub-links for PDFs or images
# Now detect any PDF or image URLs in the Markdown text
page_markdown = scrape_result.get('markdown', '')
if not page_markdown:
print(
f"{Colors.RED}No markdown returned for {link}, skipping...{Colors.RESET}")
continue

found_urls = extract_urls_from_markdown(page_markdown)
pdf_image_append = ""
sub_links = scrape_result.get('links', [])
for sublink in sub_links:
if is_pdf_url(sublink):

for sub_url in found_urls:
mime_type_short = detect_mime_type(sub_url)
if mime_type_short == 'pdf':
print(
f"{Colors.BLUE}Detected PDF in sub-link: {sublink}{Colors.RESET}")
extracted_pdf_text = gemini_extract_pdf_content(sublink)
if extracted_pdf_text:
pdf_image_append += f"\n\n[Sub-link PDF] {sublink}\n{extracted_pdf_text}"
elif is_image_url(sublink):
f"{Colors.YELLOW} Detected PDF: {sub_url}. Extracting content...{Colors.RESET}")
pdf_content = gemini_extract_pdf_content(sub_url)
if pdf_content:
pdf_image_append += f"\n\n---\n[PDF from {sub_url}]:\n{pdf_content}"
elif mime_type_short == 'image':
print(
f"{Colors.BLUE}Detected image in sub-link: {sublink}{Colors.RESET}")
extracted_img_text = gemini_extract_image_data(sublink)
if extracted_img_text:
pdf_image_append += f"\n\n[Sub-link Image] {sublink}\n{extracted_img_text}"
f"{Colors.YELLOW} Detected Image: {sub_url}. Extracting content...{Colors.RESET}")
image_content = gemini_extract_image_data(sub_url)
if image_content:
pdf_image_append += f"\n\n---\n[Image from {sub_url}]:\n{image_content}"

# Append extracted PDF/image text to the main markdown for the page
if pdf_image_append:
Expand All @@ -260,16 +301,19 @@ def find_objective_in_top_pages(map_website, objective, app):
Analyze this content to find: {objective}
If found, return ONLY a JSON object with information related to the objective. If not found, respond EXACTLY with: Objective not met
Content to analyze: {scrape_result['markdown']}
Content to analyze:
{scrape_result['markdown']}
Remember:
- Return valid JSON if information is found
- Return EXACTLY "Objective not met" if not found
- No other text or explanations
"""

response = genai.GenerativeModel(
'gemini-pro').generate_content(check_prompt)
response = client.models.generate_content(
model=model_name,
contents=[check_prompt]
)

result = response.text.strip()

Expand Down

0 comments on commit 582bbf8

Please sign in to comment.